空間四面體ABCD中,BD=,其余各棱長為1,求二面角A-BC-D的大。

答案:
解析:

二面角D-BC-A的大小為arccos


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知O是△ABC內(nèi)任意一點(diǎn),連結(jié)AO,BO,CO并延長交對邊于A′,B′,C′,則
OA′
AA′
+
OB′
BB′
+
OC′
CC′
=1,這是平面幾何中的一個(gè)命題,運(yùn)用類比猜想,對于空間四面體ABCD中,若O四面體ABCD內(nèi)任意點(diǎn)存在什么類似的命題
VO-BCD
VABCD
+
V0-ABD
VABCD
+
VO-ACD
VABCD
+
VO-ABC
VABCD
=1
VO-BCD
VABCD
+
V0-ABD
VABCD
+
VO-ACD
VABCD
+
VO-ABC
VABCD
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知結(jié)論:“在正三角形ABC中,若D是邊BC的中點(diǎn),G是三角形ABC的重心,則
AG
GD
=2
”,若把該結(jié)論推廣到空間,則有結(jié)論:“在棱長都相等的四面體ABCD中,若△BCD的中心為M,四面體內(nèi)部一點(diǎn)O到四面體各面的距離都相等,則
AO
OM
=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年高中會(huì)考數(shù)學(xué)必備一本全2002年1月第1版 題型:013

空間四面體ABCD中,AB、BC、CD的中點(diǎn)分別為M、N、P,且MN=2,NP=,MP=3,那么異面直線AC與BD所成的角是

[  ]

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

空間四面體ABCD中,BD=,其余各棱長為1,求二面角A-BC-D的大小.

查看答案和解析>>

同步練習(xí)冊答案