(本小題滿分12分)如圖,已知平面是垂足.

(Ⅰ)求證:平面;             
(Ⅱ)若,求證:
(Ⅰ)見(jiàn)解析(Ⅱ)見(jiàn)解析

試題分析:(Ⅰ)因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824000336695714.png" style="vertical-align:middle;" />,所以
同理

平面.                                                   ……4分.
(Ⅱ)設(shè)與平面的交點(diǎn)為,連結(jié)、
因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/20140824000336601409.png" style="vertical-align:middle;" />平面,所以
所以是二面角的平面角.
,
所以,即
在平面四邊形中,
所以.故平面平面.                               ……12分
點(diǎn)評(píng):垂直是立體幾何的必考題目,且?guī)缀趺磕甓加幸粋(gè)解答題出現(xiàn),所以是高考的熱點(diǎn)也是重點(diǎn).而靈活利用幾何體的結(jié)構(gòu)特征找出平面圖形中的平行與垂直關(guān)系是證明的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
正四棱柱ABCD—A1B1C1D1中,已知AB=2,E,F(xiàn)分別是D1B,AD的中點(diǎn),
(1)建立適當(dāng)?shù)淖鴺?biāo)系,求出E點(diǎn)的坐標(biāo);
(2)證明:EF是異面直線D1B與AD的公垂線;
(3)求二面角D1—BF—C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,正四棱柱中,,則異面直線所成角的余弦值為(      )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

在長(zhǎng)方體ABCD—A1B1C1D1中,AB=3,AD=4,AA1=5,則直線AC1與平面ABCD所成角的大小為         

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,四棱錐P-ABCD中,底面ABCD是矩形,PD⊥平面ABCD,且PD=AD=1,AB=2,點(diǎn)E是AB上一點(diǎn),當(dāng)二面角P-EC-D的平面角為時(shí),AE=(  )
A.1B.C.2-D.2-

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

,且,OA與O1A1的方向相同,則下列結(jié)論正確的是(   )
A.且方向相同B.
C.OB與O1B1不平行D.OB與O1B1不一定平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,直角坐標(biāo)系所在的平面為,直角坐標(biāo)系所在的平面為,且二面角的大小等于.已知內(nèi)的曲線的方程是,則曲線內(nèi)的射影的曲線方程是________ .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

兩二面角的的兩個(gè)半平面分別垂直,則這兩個(gè)二面角的大小關(guān)系是(   )
A.一定相等B.一定互補(bǔ)
C.一定相等或互補(bǔ)D.以上都不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本題滿分15分)已知正方體的棱長(zhǎng)為1,點(diǎn)上,點(diǎn)上,且
(1)求直線與平面所成角的余弦值;
(2)用表示平面和側(cè)面所成的銳二面角的大小,求;
(3)若分別在上,并滿足,探索:當(dāng)的重心為時(shí),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案