如圖,橢圓C1:+=1(a>b>0)的離心率為,x軸被曲線C2:y=x2-b截得的線段長等于C1的長半軸長.
(Ⅰ)求C1,C2的方程;
(Ⅱ)設(shè)C2與y軸的焦點為M,過坐標(biāo)原點O的直線l與C2相交于點A,B,直線MA,MB分別與C1相交與D,E.
(i)證明:MD⊥ME;
(ii)記△MAB,△MDE的面積分別是S1,S2.問:是否存在直線l,使得=?
請說明理由.
科目:高中數(shù)學(xué) 來源:江西省新余一中2012屆高三第三模擬考試數(shù)學(xué)文科試題 題型:044
如圖,橢圓C:+=1的焦點在x軸上,左右頂點分別為A1,A,上頂點B,拋物線C1,C2分別以A,B為焦點,其頂點均為坐標(biāo)原點O,C1與C2相交于直線y=x上一點P.
(1)求橢圓C及拋物線C1,C2的方程;
(2)若動直線l與直線OP垂直,且與橢圓C交于不同兩點M,N,已知點Q(-,0),求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省衡水中學(xué)2012屆高三上學(xué)期五調(diào)考試數(shù)學(xué)理科試題 題型:044
如圖,曲線C1是以原點O為中心、F1,F(xiàn)2為焦點的橢圓的一部分,曲線C2是以O(shè)為頂點、F2為焦點的拋物線的一部分,A是曲線C1和C2的交點且∠AF2F1為鈍角,若|AF1|=,|AF2|=.
(1)求曲線C1和C2的方程;
(2)過F2作一條與x軸不垂直的直線,分別與曲線C1、C2依次交于B、C、D、E四點,若G為CD中點、H為BE中點,問是否為定值?若是求出定值;若不是說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:安徽省蕪湖一中2012屆高三第六次模擬考試數(shù)學(xué)理科試題 題型:044
如圖,橢圓C1∶的離心率為,x軸被曲線C2∶y=x2-b截得的線段長等于C1的長半軸長.
(Ⅰ)求C1,C2的方程.
(Ⅱ)設(shè)C2與y軸的交點為M,過坐標(biāo)原點O的直線l與C2相交于點A,B,直線MA,MB分別與C1相交于點D,E.求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
如圖,橢圓的中心在原點,長軸AA1在x軸上.以A、A1為焦點的雙曲線交橢圓于C、D、D1、C1四點,且|CD|=|AA1|.橢圓的一條弦AC交雙曲線于E,設(shè),當(dāng)時,求雙曲線的離心率e的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com