【題目】已知函數(shù),在區(qū)間上有最大值4,最小值1,設(shè)

(1)求的值;

(2)不等式上恒成立,求實(shí)數(shù)的取值范圍;

(3)方程有四個不同的實(shí)數(shù)解,求實(shí)數(shù)的取值范圍.

【答案】(1);(2);(3).

【解析】

試題分析:(1)函數(shù)的對稱軸為當(dāng)時,上為增函數(shù),根據(jù)最值求得,當(dāng)時,上為減函數(shù),無解,故;2)原不等式分離參數(shù)得,利用配方法求得右邊函數(shù)的最小值為,所以3先化簡原方程得,利用換元法和二次函數(shù)圖與性質(zhì),求得.

試題解析:

(1),對稱軸

當(dāng)時,上為增函數(shù),

,

當(dāng)時,上為減函數(shù),

,

(2)方程可化為,

,令,

,記,

(3)方程,可化為,

,

,則方程可化為,

方程有四個不同的實(shí)數(shù)解,

的圖像可知,

有兩個根,令

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以下給出對程序框圖的幾種說法:

①任何一個程序框圖都必須有起止框;②輸入框只能緊接開始框,輸出框只能緊接結(jié)束框;③判斷框是唯一具有超出一個退出點(diǎn)的符號;④對于一個問題的算法來說,其程序框圖判斷框內(nèi)的條件的表述方法是唯一的.

其中正確說法的個數(shù)是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司2016年前三個月的利潤(單位:百萬元)如下:

月份

1

2

3

利潤

2

3.9

5.5

(1)求利潤關(guān)于月份的線性回歸方程;

(2)試用(1)中求得的回歸方程預(yù)測4月和5月的利潤;

(3)試用(1)中求得的回歸方程預(yù)測該公司2016年從幾月份開始利潤超過1000萬?

相關(guān)公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知隨機(jī)變量ξ+η=8,若ξ~B(10,0.6),則E(η),D(η)分別是 (  )

A. 6和2.4 B. 2和2.4

C. 2和5.6 D. 6和5.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

已知曲線C的極坐標(biāo)方程是ρ=2cosθ,以極點(diǎn)為平面直角坐標(biāo)系的原點(diǎn),極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線L的參數(shù)方程是(t為參數(shù)).

(1)求曲線C的直角坐標(biāo)方程和直線L的普通方程;

(2)設(shè)點(diǎn)P(m,0),若直線L與曲線C交于A,B兩點(diǎn),且|PA||PB|=1,求實(shí)數(shù)m的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購買2臺機(jī)器,該種機(jī)器使用三年后即被淘汰機(jī)器有一易損零件,在購進(jìn)機(jī)器時,可以額外購買這種零件作為備件,每個200元在機(jī)器使用期間,如果備件不足再購買,則每個500元現(xiàn)需決策在購買機(jī)器時應(yīng)同時購買幾個易損零件,為此搜集并整理了100臺這種機(jī)器在三年使用期內(nèi)更換的易損零件數(shù),得下面柱狀圖:

以這100臺機(jī)器更換的易損零件數(shù)的頻率代替1臺機(jī)器更換的易損零件數(shù)發(fā)生的概率,記表示2臺機(jī)器三年內(nèi)共需更換的易損零件數(shù),表示購買2臺機(jī)器的同時購買的易損零件數(shù)

I的分布列;

II若要求,確定的最小值;

III以購買易損零件所需費(fèi)用的期望值為決策依據(jù),在之中選其一,應(yīng)選用哪個?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)在區(qū)間上的最大值為3,最小值為-17,求的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中是公理的是

A. 在空間中,如果兩個角的兩條邊對應(yīng)平行,那么這兩個角相等或互補(bǔ)

B. 如果一個平面經(jīng)過另一個平面的一條垂線,那么這兩個平面互相垂直

C. 平行于同一條直線的兩條直線平行

D. 如果兩個平行平面同時與第三個平面相交,那么它們的交線平行

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知f(x)是定義在[m,n]上的奇函數(shù),且f(x)在[m,n]上的最大值為a,則函數(shù)F(x)=f(x)+3在[m,n]上的最大值與最小值之和為( )
A.2a+3
B.2a+6
C.6-2a
D.6

查看答案和解析>>

同步練習(xí)冊答案