(本小題滿分12分)
已知某單位有50名職工,從中按系統(tǒng)抽樣抽取10名職工,分別統(tǒng)計這10名職工的體重(單位:公斤),獲得體重數(shù)據(jù)的莖葉圖如圖所示。
(Ⅰ)求該樣本的方差;
(Ⅱ)從這10名職工中隨機抽取兩名體重不輕于73公斤的職工,求體重為76公斤的職工被抽取到的概率。


(1)52
(2)

解析

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

.已知甲、乙、丙三種食物的維生素A、B含量及成本如下表,若用甲、乙、丙三種食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物內(nèi)至少含有56000單位維生素A和63000單位維生素B.

 



維生素A(單位/千克)
600
700
400
維生素B(單位/千克)
800
400
500
成本(元/千克)
11
9
4
(Ⅰ)用x,y表示混合食物成本c元;
(Ⅱ)確定x,y,z的值,使成本最低.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分8分)在學校開展的綜合實踐活動中,某班進行了小制作評比,作品上交時間為5月1日至30日,評委會把同學們上交作品的件數(shù)按5天一組分組統(tǒng)計,繪制了頻率分布直方圖(如圖所示),已知從左到右各長方形的高的比為2∶3∶4∶6∶4∶1,第三組的頻數(shù)為12,請解答下列問題:

(1)本次活動共有多少件作品參加評比?
(2)哪組上交的作品數(shù)量最多?有多少件?
(3)經(jīng)過評比,第四組和第六組分別有10件、2件作品獲獎,問這兩組哪組獲獎率高?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分14分)為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表和頻數(shù)條形圖,解答下列問題:
(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(Ⅱ)補全頻數(shù)條形圖;
(Ⅲ)學校決定成績在75.5~85.5分的學生為二等獎,問該校獲得二等獎的學生約為多少人?

分組
頻數(shù)
頻率
50.5~60.5
4
0.08
60.5~70.5
 
0.16
70.5~80.5
10
 
80.5~90.5
16
0.32
90.5~100.5
 
 
合計
50
 
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(13分)為了了解高一學生的體能狀況,某校抽取部分學生進行一分鐘跳繩次數(shù)測試,將所得數(shù)據(jù)整理后,畫出頻率分布直方圖(如圖),圖中從左到右各小長方形的面積之比為2:4:17:15:9:3,第二小組頻數(shù)為12.
(1)求第二小組的頻率;
(2)求樣本容量;
(3)若次數(shù)在110以上為達標,試估計全體高一學生的達標率為多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

假設(shè)關(guān)于某種設(shè)備的使用年限和支出的維修費用(萬元),有以下的統(tǒng)計資料:

使用年限
2
3
4
5
6
維修費用
2.2
3.8
5.5
6.5
7.0
 (1)求支出的維修費用與使用年限的線性回歸方程;
(2)估計使用年限為10年時,維修費用是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

某校組織一次籃球投籃測試,已知甲同學每次投籃的命中率均為1/2。
(1)若規(guī)定每投進1球得2分,甲同學投籃4次,求總得分X的概率分布和數(shù)學期望。
(2)假設(shè)連續(xù)3次投籃未中或累計7次投籃未中,則停止投籃測試,問:甲同學恰好投籃10次,被停止投籃測試的概率是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題10分) 為了讓學生了解環(huán)保知識,增強環(huán)保意識,某中學舉行了一次“環(huán)保知識競賽”,共有900名學生參加了這次競賽.為了解本次競賽成績情況,從中抽取了部分學生的成績(得分均為整數(shù),滿分為100分)進行統(tǒng)計.請你根據(jù)尚未完成并有局部污損的頻率分布表和頻率分布直方圖,解答下列問題:

分組
頻數(shù)
頻率
50.5~60.5
4
0.08
60.5~70.5
 
0.16
70.5~80.5
10
 
80.5~90.5
16
0.32
90.5~100.5
 
 
合計
50
 

(Ⅰ)填充頻率分布表的空格(將答案直接填在表格內(nèi));
(Ⅱ)補全頻率分布直方圖;
(Ⅲ)學校決定成績在75.5~85.5分的學生為二等獎,
問該校獲得二等獎的學生約為多少人?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

下表提供了某廠節(jié)能降耗技術(shù)改造后生產(chǎn)甲產(chǎn)品過程中記錄的產(chǎn)量x(噸)與相應(yīng)的生產(chǎn)能耗y(噸標準煤)的幾組對照數(shù)據(jù)







2.5


4.5
(1) 請畫出上表數(shù)據(jù)的散點圖;
(2) 請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(附:最小二乘法求線性回歸方程系數(shù)公式 ,
另外:計算數(shù)據(jù)3×2.5+4×3+5×4+6×4.5=66.5可供使用)
(3) 已知該廠技術(shù)改造前100噸甲產(chǎn)品能耗為90噸標準煤;試根據(jù)(2)所求出的線性回歸方程,預測生產(chǎn)100噸甲產(chǎn)品的生產(chǎn)能耗比技術(shù)改造前降低多少噸標準煤?

查看答案和解析>>

同步練習冊答案