(備用)已知函數(shù)數(shù)學(xué)公式
(1)判斷函數(shù)f(x)的奇偶性和單調(diào)性;
(2)對于函數(shù)f(x),當(dāng)x∈(-1,1)時(shí),有f(1-t)+f(1-t2)<0,求實(shí)數(shù)t的集合A.

解:(1)∵f(x) 定義域?yàn)镽,
,
所以f(x)是奇函數(shù);
在(-∞,+∞)上任取x1,x2,令x1<x2,
f(x1)-f(x2)=
=
=,
∵a>1,x1<x2
,
∴f(x1)-f(x2)<0,
∴f(x)是增函數(shù).
(2)∵f(1-t)+f(1-t2)<0,f(x)是奇函數(shù),且在R上為增函數(shù),
∴f(1-t)<f(t2-1),
∵t∈(-1,1),
,即,
解得1<t<,
∴集合A={t|1<t<}.
分析:(1)f(x)r 定義域?yàn)镽,,所以f(x)是奇函數(shù);再由定義證明f(x)的單調(diào)性,是增函數(shù).
(2)由f(1-t)+f(1-t2)<0,f(x)是奇函數(shù),且在R上為增函數(shù),知f(1-t)<f(t2-1),所以x∈(-1,1)時(shí),f(1-t)+f(1-t2)<0等價(jià)于,由此能求出集合A.
點(diǎn)評:本題考查函數(shù)的奇偶性、單調(diào)性的判斷和集合的求法,解題時(shí)要認(rèn)真審題,注意指數(shù)函數(shù)性質(zhì)的靈活運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(備用)已知函數(shù)f(x)=
12
(ax-a-x),(a>1,x∈R)

(1)判斷函數(shù)f(x)的奇偶性和單調(diào)性;
(2)對于函數(shù)f(x),當(dāng)x∈(-1,1)時(shí),有f(1-t)+f(1-t2)<0,求實(shí)數(shù)t的集合A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(備用)已知函數(shù)f(x)=
1
2
(ax-a-x),(a>1,x∈R)

(1)判斷函數(shù)f(x)的奇偶性和單調(diào)性;
(2)對于函數(shù)f(x),當(dāng)x∈(-1,1)時(shí),有f(1-t)+f(1-t2)<0,求實(shí)數(shù)t的集合A.

查看答案和解析>>

同步練習(xí)冊答案