14.函數(shù)f(x)=log2(x2-4x+5)的零點(diǎn)為2.

分析 令f(x)=log2(x2-4x+5)=0,結(jié)合對(duì)數(shù)的運(yùn)算性質(zhì),可得答案.

解答 解:若函數(shù)f(x)=log2(x2-4x+5)=0,
則x2-4x+5=1,
解得:x=2.
故函數(shù)f(x)=log2(x2-4x+5)的零點(diǎn)為2,
故答案為:2

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的零點(diǎn),對(duì)數(shù)函數(shù)的圖象和性質(zhì),難度不大,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.求到點(diǎn)A(-5,0)和B(5,0)的距離的平方差為36的動(dòng)點(diǎn)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.三點(diǎn)可確定平面的個(gè)數(shù)是(  )
A.0B.1C.2D.1個(gè)或無數(shù)個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知a,b為正整數(shù),且a+b=1,求證:$\frac{1}{a}$+$\frac{1}$≥4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)拋物線C:y2=2px(0<p≤4)的焦點(diǎn)為F,點(diǎn)M在C上,|MF|=5,以MF為直徑的圓過點(diǎn)(0,2).
(1)求C的方程;
(2)在拋物線C上求一點(diǎn)T,使T點(diǎn)到直線x-4y+5=0的距離最短;
(3)已知直線l1:4x-3y+6=0和直線l2:x=-1,求拋物線C上的動(dòng)點(diǎn)P直線l1和直線l2的距離之和的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若以雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{^{2}}$=1(b>0)的左、右焦點(diǎn)和點(diǎn)(1,$\sqrt{2}$)為頂點(diǎn)的三角形為直角三角形,則b等于( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若橢圓的兩個(gè)焦點(diǎn)與其中一個(gè)短軸端點(diǎn)恰好連成等腰直角三角形,則該橢圓的離心率為( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知橢圓C的兩個(gè)焦點(diǎn)分別為F1(-$\sqrt{10}$,0),F(xiàn)2($\sqrt{10}$,0),且橢圓C過點(diǎn)P(3,2).
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)與直線OP平行的直線交橢圓C于A,B兩點(diǎn),求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.如圖,兩個(gè)變量具有相關(guān)關(guān)系的圖是(  )
A.(1)(2)B.(1)(3)C.(2)(4)D.(2)(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案