設(shè)實(shí)數(shù)x、y滿(mǎn)足
x≤3
2x-y-2≥0
x+y-3≥0
,則z=x-2y的最小值為
 
分析:先根據(jù)約束條件畫(huà)出可行域,再利用幾何意義求最值,z=x-2y表示直線(xiàn)在y軸上的截距,只需求出可行域直線(xiàn)在y軸上的截距最小值即可.
解答:精英家教網(wǎng)解:先根據(jù)約束條件畫(huà)出可行域,
當(dāng)直線(xiàn)z=x-2y過(guò)點(diǎn)A(3,4)時(shí),
z最小是-5,
故填:-5.
點(diǎn)評(píng):本題主要考查了簡(jiǎn)單的線(xiàn)性規(guī)劃,以及利用幾何意義求最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足 
x-y-2≤0
x+2y-5≥0
y-2≤0
,則u=
x2+y2
xy
的取值范圍是( 。
A、[2,
5
2
]
B、[
5
2
,
10
3
]
C、[2,
10
3
]
D、[
1
4
,4]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足
x≤3
x-y+2≥0
x+y-4≥0
,則x2+y2的取值范圍是
[8,34]
[8,34]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,則
y
x
的最大值是
3
2
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)實(shí)數(shù)x,y滿(mǎn)足
x-y-2≤0
x+2y-4≥0
2y-3≤0
,則z=
x
y
的最小值是
2
3
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•威海一模)設(shè)實(shí)數(shù)x,y滿(mǎn)足
x+2y-4≤0
x-y≥0
y>0
,則x-2y的最大值為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案