(18分)已知橢圓C:,在曲線C上是否存在不同兩點A、B關(guān)于直線(m為常數(shù))對稱?若存在,求出滿足的條件;若不存在,說明理由。

 

【答案】

。

【解析】略

 

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
2
2
,且曲線過點(1,
2
2
)

(1)求橢圓C的方程;
(2)已知直線x-y+m=0與橢圓C交于不同的兩點A,B,且線段AB的中點不在圓x2+y2=
5
9
內(nèi),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的焦點和上頂點分別為F1、F2、B,我們稱△F1BF2為橢圓C的特征三角形.如果兩個橢圓的特征三角形是相似三角形,則稱這兩個橢圓為“相似橢圓”,且特征三角形的相似比即為相似橢圓的相似比.已知橢圓C1
x2
a2
+
y2
b2
=1
以拋物線y2=4
3
x
的焦點為一個焦點,且橢圓上任意一點到兩焦點的距離之和為4.(1)若橢圓C2與橢圓C1相似,且相似比為2,求橢圓C2的方程.
(2)已知點P(m,n)(mn≠0)是橢圓C1上的任一點,若點Q是直線y=nx與拋物線x2=
1
mn
y
異于原點的交點,證明點Q一定落在雙曲線4x2-4y2=1上.
(3)已知直線l:y=x+1,與橢圓C1相似且短半軸長為b的橢圓為Cb,是否存在正方形ABCD,使得A,C在直線l上,B,D在曲線Cb上,若存在求出函數(shù)f(b)=SABCD的解析式及定義域,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓C的中心在原點,焦點在x 軸上,它的一個頂點恰好是拋物線y=
1
8
x2
的焦點,離心率等于
5
3

(1)求橢圓C的方程;
(2)過點(2,0)作直線l,與曲線C交于A、B兩點,O是坐標原點,是否存在這樣的直線l,使
OA
OB
=0
?若存在,求出直線l的方程,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•福建模擬)已知拋物線C的頂點在坐標原點,焦點F在x軸上,且過點(1,2).
(Ⅰ)求拋物線C的方程;
(Ⅱ)命題:“過橢圓
x2
25
+
y2
16
=1
的一個焦點F1作與x軸不垂直的任意直線l”交橢圓于A、B兩點,線段AB的垂直平分線交x軸于點M,則
|AB|
|F1M|
為定值,且定值是
10
3
”.命題中涉及了這么幾個要素:給定的圓錐曲線T,過該圓錐曲線焦點F1的弦AB,AB的垂直平分線與焦點所在的對稱軸的交點M,AB的長度與F1、M兩點間距離的比值.試類比上述命題,寫出一個關(guān)于拋物線C的類似的正確命題,并加以證明.
(Ⅲ)試推廣(Ⅱ)中的命題,寫出關(guān)于拋物線的一般性命題(不必證明).

查看答案和解析>>

同步練習冊答案