【題目】已知函數(shù),函數(shù)的圖像為直線.
(Ⅰ)當(dāng)時,若函數(shù)的圖像永遠在直線下方,求實數(shù)的取值范圍;
(Ⅱ)當(dāng)時,若直線與函數(shù)的圖像的有兩個不同的交點,線段的中點為 ,求證:.
【答案】(1)的取值范圍是;(2)見解析.
【解析】
(1)當(dāng)時,若函數(shù)的圖像永遠在直線下方,轉(zhuǎn)化為在上恒成立上,設(shè),利用導(dǎo)數(shù)得到在時取得最大值,即可求解實數(shù)的取值范圍;
(2)設(shè)的橫坐標(biāo)是,要證,轉(zhuǎn)化為證,
不妨設(shè),則,轉(zhuǎn)化為證明,進而轉(zhuǎn)化為即證,令,等價于證明在時恒成立. 構(gòu)造新函數(shù),利用導(dǎo)數(shù)求得函數(shù)的單調(diào)性與最值,即可得到結(jié)論.
(1)當(dāng)時,若函數(shù)的圖像永遠在直線下方,即,
在上恒成立,即在上恒成立上.
設(shè),對求導(dǎo)得 ,
, ,
所以在時取得極大值,也是最大值,于是的取值范圍是.
(2)設(shè)的橫坐標(biāo)是(不妨設(shè)),
要證,只需證,即證,
即證, 即證,
,只需證明:,
不妨設(shè),則,所以只需證,
即證,只需證,
因為直線與曲線相交,所以,,
所以
則只需證,即證:,即證(※),
下面構(gòu)造函數(shù)證明之:因為已設(shè),且由的定義域知,,
所以令,則(※)等價于證明在時恒成立.
為此構(gòu)造函數(shù),則,
于是當(dāng)時,,即在上遞增,
又,所以在恒成立,即在時恒成立,
則(※)成立,于是原命題成立.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列命題:
①已知,“且”是“”的充分條件;
②已知平面向量,“”是“”的必要不充分條件;
③已知,“”是“”的充分不必要條件;
④命題:“,使且”的否定為:“,都有且”.其中正確命題的個數(shù)是( )
A. 0 B. 1 C. 2 D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), ,
(1)若,且在其定義域上存在單調(diào)遞減區(qū)間,求實數(shù)的取值范圍;
(2)設(shè)函數(shù), ,若恒成立,求實數(shù)的取值范圍;
(3)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點、,過線段的中點作軸的垂線分別交, 于點、,證明: 在點處的切線與在點處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知集合.
(1)證明:若,則,;
(2)證明:若,則,并由此證明中的元素若滿足,則;
(3)設(shè),試求滿足的所有的可能值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】定義滿足不等式|xA|<B(A∈R,B>0)的實數(shù)x的集合叫做A的B鄰域.若a+bt(t為正常數(shù))的a+b鄰域是一個關(guān)于原點對稱的區(qū)間,則a2+b2的最小值為______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在物理學(xué)中,聲波在單位時間內(nèi)作用在與其傳遞方向垂直的單位面積上的能量稱聲強.日常生活中能聽到的聲音其聲強范圍很大,最大和最小之間的比值可達倍.用聲強的物理學(xué)單位表示聲音強弱很不方便。當(dāng)人耳聽到兩個強度不同的聲音時,感覺的大小大致上與兩個聲強比值的常用對數(shù)成比例.所以引入聲強級來表示聲音的強弱.
某一處的聲強級,是指該處的聲強P與參考聲強的比值的常用對數(shù),單位為貝爾(B),其中參考聲強瓦/米2實際生活中一般用1貝爾的十分之一,即分貝()來作為聲強級的單位,其公式為聲強級.若某工廠環(huán)境內(nèi)有一臺機器(聲源)單獨運轉(zhuǎn)時,發(fā)出噪聲的聲強級為80分貝,那么兩臺相同的機器一同運轉(zhuǎn)時(聲強為原來的兩倍),發(fā)出噪聲的聲強級為分______貝(精確到0.1分).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線平面,直線平行四邊形,四棱錐的頂點在平面上,,,,,分別是與的中點.
(1)求證:平面;
(2)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)為了加強學(xué)生數(shù)學(xué)核心素養(yǎng)的培養(yǎng),鍛煉學(xué)生自主探究的學(xué)習(xí)能力,他們以函數(shù)為基本素材研究該函數(shù)的相關(guān)性質(zhì),某研究小組6位同學(xué)取得部分研究成果如下:
①同學(xué)甲發(fā)現(xiàn):函數(shù)的零點為;
②同學(xué)乙發(fā)現(xiàn):函數(shù)是奇函數(shù);
③同學(xué)丙發(fā)現(xiàn):對于任意的都有;
④同學(xué)丁發(fā)現(xiàn):對于任意的,都有;
⑤同學(xué)戊發(fā)現(xiàn):對于函數(shù)定義域中任意的兩個不同實數(shù),,總滿足;
⑥同學(xué)己發(fā)現(xiàn):求使的x的取值范圍是.
其中正確結(jié)論的序號為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某森林出現(xiàn)火災(zāi),火勢正以每分鐘的速度順風(fēng)蔓延,消防站接到警報立即派消防隊員前去,在火災(zāi)發(fā)生后分鐘到達救火現(xiàn)場,已知消防隊員在現(xiàn)場平均每人每分鐘滅火,所消耗的滅火材料、勞務(wù)津貼等費用為每人每分鐘125元,另附加每次救火所損耗的車輛、器械和裝備等費用平均每人100元,而燒毀一平方米森林損失費為60元.
(1)設(shè)派名消防隊員前去救火,用分鐘將火撲滅,試建立與的函數(shù)關(guān)系式;
(2)問應(yīng)該派多少名消防隊員前去救火,才能使總損失最少?
(總損失=滅火材料、勞務(wù)津貼等費用+車輛、器械和裝備費用+森林損失費)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com