10.已知函數(shù)f(x)=ln$\frac{x}{2}$+$\frac{1}{2}$,g(x)=ex-2,對于?m∈R,?n∈(0,+∞)使得f(m)=g(n)成立,則n-m的最大值為( 。
A.-ln2B.ln2C.2$\sqrt{e}$-3D.e2-3

分析 不妨設(shè)f(m)=g(n)=a,從而可得n-m的表達式,(a>0)由導(dǎo)數(shù)確定函數(shù)的單調(diào)性,再求最小值即可.

解答 解:不妨設(shè)f(m)=g(n)=a,
∴en-2=ln$\frac{m}{2}$+$\frac{1}{2}$=a,
∴n-2=lna,m=2•${e}^{a-\frac{1}{2}}$,
故n-m=lna-2•${e}^{a-\frac{1}{2}}$+2,(a>0)
令h(a)=lna-2•${e}^{a-\frac{1}{2}}$+2,
h′(a)=$\frac{1}{a}$-2•${e}^{a-\frac{1}{2}}$,
易知h′(a)在(0,+∞)上是減函數(shù),
且h′($\frac{1}{2}$)=0,
故h(a)在a=$\frac{1}{2}$處有最大值,
即n-m的最大值為ln2;
故選:B.

點評 本題考查了函數(shù)的性質(zhì)應(yīng)用及導(dǎo)數(shù)的綜合應(yīng)用,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標系中,已知圓O:x2+y2=4與直線l:x=4,A,B是圓O與x軸的交點,P是l上的動點.
(1)若從P到圓O的切線長為$2\sqrt{3}$,求點P的坐標;
(2)若直線PA,PB與圓O的另一個交點分別為M,N,求證:直線MN經(jīng)過定點.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.在△ABC中,A=60°,a=6$\sqrt{3}$,則$\frac{a+b+c}{sinA+sinB+sinC}$=12.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=ax-lnx,a∈R.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若a=e2,當x∈(0,e]時,求函數(shù)f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若函數(shù)f(x)=x2+bx+c的圖象的頂點在第四象限,則函數(shù)f′(x)的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=x-2cosx在區(qū)間$[-\frac{π}{2},0]$上的最小值是( 。
A.$-\frac{π}{2}$B.-2C.$-\frac{π}{3}-1$D.$-\frac{π}{6}-\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<$\frac{π}{2}$)的部分圖象如圖所示,則關(guān)于函數(shù)f(x)的性質(zhì)的結(jié)論正確的有①②③④(填序號)
①f(x)的圖象關(guān)于點(-$\frac{1}{6}$,0)對稱;
②f(x)的圖象關(guān)于直線x=$\frac{4}{3}$對稱;
③f(x)在[-$\frac{1}{2},\frac{1}{3}$]上為增函數(shù);
④把f(x)的圖象向右平移$\frac{2}{3}$個單位長度,得到一個偶函數(shù)的圖象.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知復(fù)數(shù)z在復(fù)平面內(nèi)對應(yīng)的點為(-1,1),則復(fù)數(shù)$\frac{z+3}{z+2}$的模為( 。
A.$\sqrt{10}$B.$\frac{\sqrt{10}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x)=$\left\{\begin{array}{l}{x^2}-2ax,x≥2\\ 4x-6,x<2\end{array}$在定義域R上是增函數(shù),則a的取值范圍是(  )
A.a≥0B.a≤0C.$a≤\frac{1}{2}$D.a≤-1

查看答案和解析>>

同步練習(xí)冊答案