已知函數(shù)的導(dǎo)數(shù)為,且時(shí),,則這個(gè)函數(shù)的解析
式為________.
 
解:因?yàn)楹瘮?shù)的導(dǎo)數(shù)為,因此可知解析式為 
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

為了迎接世博會(huì),某旅游區(qū)提倡低碳生活,在景區(qū)提供自行車出租。該景區(qū)有50輛自行車供游客租賃使用,管理這些自行車的費(fèi)用是每日115元。根據(jù)經(jīng)驗(yàn),若每輛自行車的日租金不超過(guò)6元,則自行車可以全部租出;若超出6元,則每超過(guò)1元,租不出的自行車就增加3輛。為了便于結(jié)算,每輛自行車的日租金x(元)只取整數(shù),并且要求出租自行車一日的總收入必須高于這一日的管理費(fèi)用,用y(元)表示出租自行車的日凈收入(即一日中出租自行車的總收入減去管理費(fèi)用后的所得)。
(1)求函數(shù)的解析式及其定義域;
(2)試問(wèn)當(dāng)每輛自行車的日租金定為多少元時(shí),才能使一日的凈收入最多?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

快艇和輪船分別從A地和C地同時(shí)開出,如右圖,各沿箭頭方向航行,快艇和輪船的速度分別是45千米/時(shí)和15千米/時(shí),已知AC=150千米,經(jīng)過(guò)多少時(shí)間后,快艇和輪船之間的距離最短?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

.已知.則f(x)=(     )
A.f(x)=x+2B.f(x)=x+2(x≥0)
C.f(x)=x2-1D.f(x)=x2-1(x≥1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

某高中食堂定期購(gòu)買面粉.已知學(xué)校食堂每天早餐需用面粉600公斤,每公斤面粉的價(jià)格為5元,而面粉的保管等其它費(fèi)用為平均每百公斤每天3元,購(gòu)買面粉每次需支付運(yùn)費(fèi)900元,則學(xué)校食堂每隔          天購(gòu)買一次面粉,才能使平均每天所支付的總費(fèi)用最少,最少總費(fèi)用為          元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于函數(shù)若存在,使成立,則稱點(diǎn)為函數(shù)的不動(dòng)點(diǎn),對(duì)于任意實(shí)數(shù),函數(shù)總有相異不動(dòng)點(diǎn),實(shí)數(shù)的取值范圍是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

直線與函數(shù)的圖象切于點(diǎn),則直線與坐標(biāo)軸所圍成三角形的面積的取值范圍為( )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)定義在區(qū)間l,上的函數(shù),若存在開區(qū)間和常數(shù)C,使得對(duì)任意的都有,且對(duì)任意的x(a,b)都有恒成立,則稱函數(shù)為區(qū)間I上的“Z型”函數(shù).
(I)求證:函數(shù)是R上的“Z型”函數(shù);
(Ⅱ)設(shè)是(I)中的“Z型”函數(shù),若不等式對(duì)任意的xR恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù),且,則          

查看答案和解析>>

同步練習(xí)冊(cè)答案