設(shè)
m
=(
a-1
x-2
,2-a),
n
=(x,
1
x-2
)
,解關(guān)于x的不等式:
m
n
>0.(a∈R)
m
n
=
(a-1)x
x-2
+
2-a
x-2
=
(a-1)x+2-a
x-2
>0
(2分)
(1)a=1時(shí),原不等式?
1
x-2
>0?x>+2
(2分)
(2)a>1時(shí),原不等式?
x-
a-2
a-1
x-2
>0
a-2
a-1
-2=
-a
a-1
<0

∴原不等式?x<
a-2
a-1
或x>2
(6分)
(3)a<1時(shí),原不等式?
x-
a-2
a-1
x-2
<0

①0<a<1時(shí),
a-2
a-1
>2
原不等式?2<x<
a-2
a-1
(8分)
②a=0時(shí),
a-2
a-1
=2
原不等式?(x-2)2<0的解集為φ(10分)
③a<0時(shí),
a-2
a-1
<2
原不等式?
a-2
a-1
<x<2
(12分)
綜上所述:當(dāng)a=1時(shí),不等式的解集為:{x|x>2}
當(dāng)a>1時(shí),不等式的解集為:{x|x<
a-2
a-1
或x>2}

當(dāng)0<a<1時(shí),不等式的解集為:{x|2<x<
a-2
a-1
}

當(dāng)a=0時(shí),不等式的解集為:φ
當(dāng)a<0時(shí),不等式的解集為:{x|
a-2
a-1
<x<2}
(13分)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)M是△ABC內(nèi)一點(diǎn),且S△ABC的面積為2,定義f(M)=(m,n,p),其中m,n,p分別是△MBC,△MCA,△MAB的面積,若△ABC內(nèi)一動(dòng)點(diǎn)P滿足f(P)=(1,x,y),則
1
x
+
4
y
的最小值是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•孝感模擬)設(shè)集合M={a,2},集合N={x|
x-1
x+1
≤0,x∈Z},若M∩N={0},M∪N=P,則集合P的子集有(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•寧波模擬)已知雙曲線
x2
a
-
y2
a2+a+1
=1
的離心率的范圍是數(shù)集M,設(shè)p:“k∈M”; q:“函數(shù)f(x)=
lg
x-1
x-2
  x<1
2x-k       x≥1
的值域?yàn)镽”.則P是Q成立的(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
m
=(
a-1
x-2
,2-a),
n
=(x,
1
x-2
)
,解關(guān)于x的不等式:
m
n
>0.(a∈R)

查看答案和解析>>

同步練習(xí)冊(cè)答案