已知?jiǎng)狱c(diǎn)M的坐標(biāo)滿足
,則動(dòng)點(diǎn)M的軌跡方程是
A.橢圓 | B.雙曲線 | C.拋物線 | D.以上都不對(duì) |
試題分析:
變形為
,該式表示動(dòng)點(diǎn)
到定點(diǎn)
的距離與到定直線
的距離比為常數(shù)
,根據(jù)橢圓的第二定義可知?jiǎng)狱c(diǎn)的軌跡是橢圓
點(diǎn)評(píng):橢圓的第二定義:到定點(diǎn)的距離與到定直線的距離之比為常數(shù)(小于1)的動(dòng)點(diǎn)的軌跡是橢圓
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本大題滿分14分)
已知△
的兩個(gè)頂點(diǎn)
的坐標(biāo)分別是
,
,且
所在直線的斜率之積等于
.
(Ⅰ)求頂點(diǎn)
的軌跡
的方程,并判斷軌跡
為何種圓錐曲線;
(Ⅱ)當(dāng)
時(shí),過點(diǎn)
的直線
交曲線
于
兩點(diǎn),設(shè)點(diǎn)
關(guān)于
軸的對(duì)稱點(diǎn)為
(
不重合).求證直線
與
軸的交點(diǎn)為定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題滿分13分)
已知點(diǎn)
,
,△
的周長(zhǎng)為6.
(Ⅰ)求動(dòng)點(diǎn)
的軌跡
的方程;
(Ⅱ)設(shè)過點(diǎn)
的直線
與曲線
相交于不同的兩點(diǎn)
,
.若點(diǎn)
在
軸上,且
,求點(diǎn)
的縱坐標(biāo)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:
如圖,F(xiàn)
1,F(xiàn)
2是雙曲線C:
(a>0,b>0)的左、右焦點(diǎn),過F
1的直線
與
的左、右兩支分別交于A,B兩點(diǎn).若 | AB | : | BF
2 | : | AF
2 |=3:4 : 5,則雙曲線的離心率為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知a,b為正常數(shù),F(xiàn)
1,F(xiàn)
2是兩個(gè)定點(diǎn),且|F
1F
2|=2a(a是正常數(shù)),動(dòng)點(diǎn)P滿足|PF
1|+|PF
2|=a
2+1,則動(dòng)點(diǎn)P的軌跡是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
如圖,已知橢圓
的左、右準(zhǔn)線分別為
,且分別交
軸于
兩點(diǎn),從
上一點(diǎn)
發(fā)出一條光線經(jīng)過橢圓的左焦點(diǎn)
被
軸反射后與
交于點(diǎn)
,若
,且
,則橢圓的離心率等于
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:填空題
已知雙曲線
的一條漸近線與直線
垂直,則曲線的離心率等于
。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
如圖,已知某橢圓的焦點(diǎn)是
F1(-4,0)、
F2(4,0),過點(diǎn)
F2并垂直于
x軸的直線與橢圓的一個(gè)交點(diǎn)為
B,且|
F1B|+|
F2B|=10,橢圓上不同的兩點(diǎn)
A(
x1,
y1),
C(
x2,
y2)滿足條件 |
F2A|、|
F2B|、|
F2C|成等差數(shù)列(1)求該弦橢圓的方程;(2)求弦
AC中點(diǎn)的橫坐標(biāo);(3)設(shè)弦
AC的垂直平分線的方程為
y=
kx+
m,求
m的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知雙曲線
的兩個(gè)焦點(diǎn)分別為
、
,則滿足△
的周長(zhǎng)為
的動(dòng)點(diǎn)
的軌跡方程為 ( )
查看答案和解析>>