設(shè)袋子中裝有a個紅球,b個黃球,c個藍(lán)球,且規(guī)定:取出一個紅球得1分,取出一個黃球得2分,取出一個藍(lán)球得3分.
(1)當(dāng)a=3,b=2,c=1時,從該袋子中任取(有放回,且每球取到的機會均等)2個球,記隨機變量ξ為取出此2球所得分?jǐn)?shù)之和,求ξ的分布列;
(2)從該袋子中任取(每球取到的機會均等)1個球,記隨機變量η為取出此球所得分?jǐn)?shù).若E(η)=,D(η)=,求a∶b∶c.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)2-1函數(shù)的概念與基本初等函數(shù)練習(xí)卷(解析版) 題型:解答題
已知函數(shù)f(x)=,x∈[-1,1],函數(shù)g(x)=[f(x)]2-2af(x)+3的最小值為h(a).
(1)求h(a);
(2)是否存在實數(shù)m、n同時滿足下列條件:
①m>n>3;
②當(dāng)h(a)的定義域為[n,m]時,值域為[n2,m2]?若存在,求出m、n的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-4練習(xí)卷(解析版) 題型:選擇題
極坐標(biāo)方程ρ=cos θ和參數(shù)方程 (t為參數(shù))所表示的圖形分別是( ).
A.直線、直線 B.直線、圓 C.圓、圓 D.圓、直線
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練選修4-1練習(xí)卷(解析版) 題型:填空題
如圖所示,過⊙O外一點P作一條直線與⊙O交于A,B兩點.已知PA=2,過點P的⊙O的切線長PT=4,則弦AB的長為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-3練習(xí)卷(解析版) 題型:選擇題
已知x與y之間的幾組數(shù)據(jù)如下表:
x | 1 | 2 | 3 | 4 | 5 | 6 |
y | 0 | 2 | 1 | 3 | 3 | 4 |
假設(shè)根據(jù)上表數(shù)據(jù)所得線性回歸直線方程 = x+ ,若某同學(xué)根據(jù)上表中的前兩組數(shù)據(jù)(1,0)和(2,2)求得的直線方程為y=b′x+a′,則以下結(jié)論正確的是( ).
A.>b′, >a′ B.>b′, <a′
C. <b′, >a′ D.<b′, <a′
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-2練習(xí)卷(解析版) 題型:填空題
從n個正整數(shù)1,2,…,n中任意取出兩個不同的數(shù),若取出的兩數(shù)之和等于5的概率為,則n=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-7-1練習(xí)卷(解析版) 題型:解答題
若(2+x+x2) 3的展開式中的常數(shù)項為a,求(3x2-1)dx.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-6-3練習(xí)卷(解析版) 題型:選擇題
在拋物線y=2x2上有一點P,它到A(1,3)的距離與它到焦點的距離之和最小,則點P的坐標(biāo)是( ).
A.(-2,1) B.(1,2) C.(2,1) D.(-1,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪專題復(fù)習(xí)知能提升演練1-5-2練習(xí)卷(解析版) 題型:填空題
如圖,PA⊥⊙O所在的平面,AB是⊙O的直徑,C是⊙O上的一點,E,F分別是點A在PB,PC上的射影,給出下列結(jié)論:
①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC.其中正確命題的序號是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com