1.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F做圓x2+y2=a2的切線,切點為M,切線交y軸于點P,且$\overrightarrow{FM}$=2$\overrightarrow{MP}$,則雙曲線的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2D.$\sqrt{5}$

分析 求出M的坐標(biāo),代入圓的方程求得離心率.

解答 解:設(shè)P(0,3y),則M($\frac{1}{3}$c,2y),
則∵OM⊥PF,∴$\frac{2y}{\frac{1}{3}c}•\frac{3y}{-c}$=-1,取y=$\sqrt{\frac{c}{18}}$,
M的坐標(biāo)代入圓x2+y2=a2,即圓$\frac{1}{9}$c2+$\frac{4}{18}{c}^{2}$=a2,∴$e=\sqrt{3}$,
故選:B.

點評 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡單性質(zhì)的應(yīng)用,求出M的坐標(biāo)是解題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.cos60°的值為( 。
A.-$\frac{1}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{3}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.2016年春節(jié)期間全國流行在微信群里發(fā)、搶紅包,現(xiàn)假設(shè)某人將688元發(fā)成手氣紅包50個,產(chǎn)生的手氣紅包頻數(shù)分布表如下:
金額分組[1,5)[5,9)[9,13)[13,17)[17,21)[21,25]
頻數(shù)39171182
(I)求產(chǎn)生的手氣紅包的金額不小于9元的頻率;
(Ⅱ)估計手氣紅包金額的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(III)在這50個紅包組成的樣本中,將頻率視為概率.
(i)若紅包金額在區(qū)間內(nèi)為最佳運氣手,求搶得紅包的某人恰好是最佳運氣手的概率;
(ii)隨機(jī)抽取手氣紅包金額在內(nèi)的兩名幸運者,設(shè)其手氣金額分別為m,n,求事件“|m-n|>16”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.將cos2x+sin2x化為Asin(x+θ)的形式,若函數(shù)f(x)=Asin(x+θ),則其值域為[-$\sqrt{2}$$\sqrt{2}$].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等差數(shù)列{an}中,a3,a7是函數(shù)f(x)=x2-4x+3的兩個零點,則{an}的前9項和等于( 。
A.-18B.9C.18D.36

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.拋物線y2=3x的準(zhǔn)線方程是( 。
A.$y=-\frac{3}{4}$B.$x=-\frac{3}{4}$C.$y=-\frac{1}{12}$D.$x=-\frac{1}{12}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.下列說法正確的個數(shù)為(  )
①統(tǒng)計中用相關(guān)系數(shù)r來衡量兩個變量之間的線性關(guān)系的強(qiáng)弱.線性相關(guān)系數(shù)r越大,兩個變量的線性相關(guān)性越強(qiáng);反之,線性相關(guān)性越弱.
②回歸直線$\widehat{y}$=$\widehat$x+$\widehat{a}$一定通過樣本點的中心$(\overline x,\overline y)$.
③為了了解某地區(qū)參加數(shù)學(xué)競賽的1003名學(xué)生的成績情況,準(zhǔn)備從中抽取一個容量為50的樣本,現(xiàn)采用系統(tǒng)抽樣的方法,需要從總體中剔除3個個體,在整體抽樣過程中,每個個體被剔除的概率和每個個體被抽到的概率分別是$\frac{3}{1003}$和$\frac{50}{1000}$.
④將一組數(shù)據(jù)中每個數(shù)都加上或者減去同一個常數(shù)后,方差恒不變.
A.0個B.1個C.2個D.3個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在我校進(jìn)行的選修課結(jié)業(yè)考試中,所有選修“數(shù)學(xué)與邏輯”的同學(xué)都同時也選修了“閱讀與表達(dá)”的課程,選修“閱讀與表達(dá)”的同學(xué)都同時也選修了“數(shù)學(xué)與邏輯”的課程.選修課結(jié)業(yè)成績分為A,B,C,D,E五個等級.某考場考生的兩科考試成績的數(shù)據(jù)統(tǒng)計如圖所示,其中“數(shù)學(xué)與邏輯”科目的成績?yōu)锽的考生有10人,

(1)求該考場考生中“閱讀與表達(dá)”科目中成績?yōu)锳的人數(shù);
(2)現(xiàn)在從“數(shù)學(xué)與邏輯”科目的成績?yōu)锳和D的考生中隨機(jī)抽取兩人,則求抽到的兩名考生都是成績?yōu)锳的考生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.邊長為2的兩個等邊△ABD,△CBD所在的平面互相垂直,則四面體ABCD的體積是1.

查看答案和解析>>

同步練習(xí)冊答案