已知圓心為C的圓,滿足下列條件:圓心C位于x軸正半軸上,與直線3x-4y+7=0相切,且被軸截得的弦長(zhǎng)為,圓C的面積小于13.
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)過點(diǎn)M(0,3)的直線l與圓C交于不同的兩點(diǎn)A,B,以O(shè)A,OB為鄰邊作平行四邊形OADB.是否存在這樣的直線l,使得直線OD與MC恰好平行?如果存在,求出l的方程;如果不存在,請(qǐng)說明理由.
(I)圓C的標(biāo)準(zhǔn)方程為:(x-1)2+y2=4;(Ⅱ)不存在這樣的直線l.

試題分析:(I)用待定系數(shù)法即可求得圓C的標(biāo)準(zhǔn)方程;(Ⅱ)首先考慮斜率不存在的情況.當(dāng)斜率存在時(shí),設(shè)直線l:y=kx+3,A(x1,y1),B(x2,y2).l與圓C相交于不同的兩點(diǎn),那么Δ>0.由題設(shè)及韋達(dá)定理可得k與x1、x2之間關(guān)系式,進(jìn)而求出k的值.若k的值滿足Δ>0,則存在;若k的值不滿足Δ>0,則不存在.
試題解析:(I)設(shè)圓C:(x-a)2+y2=R2(a>0),由題意知
 解得a=1或a=,                  3分
又∵S=πR2<13,
∴a=1,
∴圓C的標(biāo)準(zhǔn)方程為:(x-1)2+y2=4.                  6分
(Ⅱ)當(dāng)斜率不存在時(shí),直線l為:x=0不滿足題意.
當(dāng)斜率存在時(shí),設(shè)直線l:y=kx+3,A(x1,y1),B(x2,y2),
又∵l與圓C相交于不同的兩點(diǎn),
聯(lián)立消去y得:(1+k2)x2+(6k-2)x+6=0,        9分
∴Δ=(6k-2)2-24(1+k2)=36k2-6k-5>0,
解得
x1+x2=,y1+ y2=k(x1+x2)+6=,
,,
假設(shè),則,
,
解得,假設(shè)不成立.
∴不存在這樣的直線l.                   13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓心為點(diǎn)的圓與直線相切.

(1)求圓的標(biāo)準(zhǔn)方程;
(2)對(duì)于圓上的任一點(diǎn),是否存在定點(diǎn) (不同于原點(diǎn))使得恒為常數(shù)?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,MN為兩圓的公共弦,一條直線與兩圓及公共弦依次交于A,B,C,D,E,
求證:AB·CD=BC·DE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,點(diǎn)為銳角的內(nèi)切圓圓心,過點(diǎn)作直線的垂線,垂足為,圓與邊相切于點(diǎn).若,求的度數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系中,已知圓心在軸上,半徑為的圓位于軸的右側(cè),且與軸相切,
(Ⅰ)求圓的方程;
(Ⅱ)若橢圓的離心率為,且左右焦點(diǎn)為,試探究在圓上是否存在點(diǎn),使得為直角三角形?若存在,請(qǐng)指出共有幾個(gè)這樣的點(diǎn)?并說明理由(不必具體求出這些點(diǎn)的坐標(biāo))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,C是以AB為直徑的半圓O上的一點(diǎn),過C的直線交直線AB于E,交過A點(diǎn)的切線于D,BC∥OD.

(Ⅰ)求證:DE是圓O的切線;
(Ⅱ)如果AD=AB=2,求EB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

求過兩點(diǎn)A(1,4)、B(3,2)且圓心在直線y=0上的圓的標(biāo)準(zhǔn)方程,并判斷點(diǎn)P(2,4)與圓的關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若圓與圓外切,則的值為_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

關(guān)于直線成軸對(duì)稱圖形,則的取值范圍是(    )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案