【題目】設(shè)函數(shù)f(x)則下列結(jié)論錯誤的是( )
A.函數(shù)f(x)的值域?yàn)?/span>RB.函數(shù)f(|x|)為偶函數(shù)
C.函數(shù)f(x)為奇函數(shù)D.函數(shù)f(x)是定義域上的單調(diào)函數(shù)
【答案】A
【解析】
根據(jù)題意,依次分析選項(xiàng)是否正確,綜合即可得答案.
根據(jù)題意,依次分析選項(xiàng):
對于A,函數(shù)f(x),當(dāng)x>0時,f(x)=2x+1>2,當(dāng)x<0時,f(x)=﹣2﹣x﹣1=﹣(2﹣x+1)<﹣2,其值域不是R,A錯誤;
對于B,函數(shù)f(|x|),其定義域?yàn)?/span>{x|x≠0},有f(|﹣x|)=f(|x|),函數(shù)f(|x|)為偶函數(shù),B正確;
對于C,函數(shù)f(x),當(dāng)x>0時,﹣x<0,有f(x)=2x+1,f(﹣x)=﹣f(x)=﹣2﹣x﹣1,反之當(dāng)x<0時,﹣x>0,有f(x)=﹣2x﹣1,f(﹣x)=﹣f(x)=2x+1,
綜合可得:f(﹣x)=﹣f(x)成立,函數(shù)f(x)為奇函數(shù),C正確;
對于D,函數(shù)f(x),當(dāng)x>0時,f(x)=2x+1>2,f(x)在(0,+∞)為增函數(shù),當(dāng)x<0時,f(x)=﹣2﹣x﹣1<﹣2,f(x)在(﹣∞,0)上為增函數(shù),
故f(x)是定義域上的單調(diào)函數(shù);
故選:A.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中.
(1)求函數(shù)的極值;
(2)若函數(shù)有兩個不同的零點(diǎn)求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,已知曲線,直線l的參數(shù)方程為:(t為參數(shù)),直線l與曲線C分別交于兩點(diǎn).
(1)寫出曲線C和直線l的普通方程;
(2)若點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的曲線圖是2020年1月25日至2020年2月12日陜西省及西安市新冠肺炎累計確診病例的曲線圖,則下列判斷正確的是( )
A.1月31日陜西省新冠肺炎累計確診病例中西安市占比超過了
B.1月25日至2月12日陜西省及西安市新冠肺炎累計確診病例都呈遞增趨勢
C.2月2日后到2月10日陜西省新冠肺炎累計確診病例增加了97例
D.2月8日到2月10日西安市新冠肺炎累計確診病例的增長率大于2月6日到2月8日的增長率
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下列四個命題中,正確命題的個數(shù)有( )
①,
②命題“,”的否定是“,”
③“若,則,中至少有一個不小于2”的逆命題是真命題
④復(fù)數(shù),則的充分不必要條件是
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2020年3月,各行各業(yè)開始復(fù)工復(fù)產(chǎn),生活逐步恢復(fù)常態(tài),某物流公司承擔(dān)從甲地到乙地的蔬菜運(yùn)輸業(yè)務(wù).已知該公司統(tǒng)計了往年同期200天內(nèi)每天配送的蔬菜量X(40≤X<200,單位:件.注:蔬菜全部用統(tǒng)一規(guī)格的包裝箱包裝),并分組統(tǒng)計得到表格如表:
蔬菜量X | [40,80) | [80,120) | [120,160) | [160,200) |
天數(shù) | 25 | 50 | 100 | 25 |
若將頻率視為概率,試解答如下問題:
(1)該物流公司負(fù)責(zé)人決定隨機(jī)抽出3天的數(shù)據(jù)來分析配送的蔬菜量的情況,求這3天配送的蔬菜量中至多有2天小于120件的概率;
(2)該物流公司擬一次性租賃一批貨車專門運(yùn)營從甲地到乙地的蔬菜運(yùn)輸.已知一輛貨車每天只能運(yùn)營一趟,每輛貨車每趟最多可裝載40件,滿載才發(fā)車,否則不發(fā)車.若發(fā)車,則每輛貨車每趟可獲利2000元;若未發(fā)車,則每輛貨車每天平均虧損400元.為使該物流公司此項(xiàng)業(yè)務(wù)的營業(yè)利潤最大,該物流公司應(yīng)一次性租賃幾輛貨車?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,是平面內(nèi)的一組基向量,為內(nèi)的定點(diǎn),對于內(nèi)任意一點(diǎn),當(dāng)時,則稱有序?qū)崝?shù)對為點(diǎn)的廣義坐標(biāo),若點(diǎn)、的廣義坐標(biāo)分別為、,對于下列命題:
① 線段、的中點(diǎn)的廣義坐標(biāo)為;
② A、兩點(diǎn)間的距離為;
③ 向量平行于向量的充要條件是;
④ 向量垂直于向量的充要條件是.
其中的真命題是________(請寫出所有真命題的序號)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖是某地某月1日至15日的日平均溫度變化的折線圖,根據(jù)該折線圖,下列結(jié)論正確的是( )
A. 這15天日平均溫度的極差為
B. 連續(xù)三天日平均溫度的方差最大的是7日,8日,9日三天
C. 由折線圖能預(yù)測16日溫度要低于
D. 由折線圖能預(yù)測本月溫度小于的天數(shù)少于溫度大于的天數(shù)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值,由測量表得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | [75,85) | [85,95) | [95,105) | [105,115) | [115,125) |
頻數(shù) | 6 | 26 | 38 | 22 | 8 |
(I)在答題卡上作出這些數(shù)據(jù)的頻率分布直方圖:
(II)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(III)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于95的產(chǎn)品至少要占全部產(chǎn)品的80%”的規(guī)定?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com