觀察下列兩個結論:
(Ⅰ)若a,b∈R+,且a+b=1,則
1
a
+
1
b
≥4
;
(Ⅱ)若a,b,c∈R+,且a+b+c=1,則
1
a
+
1
b
+
1
c
≥9
;先證明結論(Ⅱ),再類比(Ⅰ)(Ⅱ)結論,請你寫出一個關于n個正數(shù)a1,a2,a3,…,an的結論?(寫出結論,不必證明.)
分析:利用條件a+b+c=1,構造柯西不等式(1+1+1)2≤(a+b+c)(
1
a
+
1
b
+
1
c
),進行求解.再類比(Ⅰ)(Ⅱ)結論寫出一個關于n個正數(shù)a1,a2,a3,…,an的結論即可.
解答:解:由柯西不等式(1+1+1)2≤(a+b+c)(
1
a
+
1
b
+
1
c
),
得32≤1×(
1
a
+
1
b
+
1
c
),
所以
1
a
+
1
b
+
1
c
≥9,
類比(Ⅰ)(Ⅱ)結論,寫出一個關于n個正數(shù)a1,a2,a3,…,an的結論是:
若ai∈R+(i=1,2,3,…,n),且
n
i=1
ai
=1,則
n
i=1
1
ai
≥n2
點評:本題主要考查了函數(shù)的最值,以及柯西不等式的應用,要求熟練掌握柯西不等式的應用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:安徽安慶市2009年高三模擬考試(二模)試題數(shù)學(文) 題型:022

給出下列四個結論:

①合情推理是由特殊到一般的推理,得到的結論不一定正確,演繹推理是由一般到特殊的推理,得到的結論一定正確.

②甲、乙兩同學各自獨立地考察兩個變量X、Y的線性相關關系時,發(fā)現(xiàn)兩人對X的觀察數(shù)據(jù)的平均值相等,都是s,對Y的觀察數(shù)據(jù)的平均值也相等,都是t,各自求出的回歸直線分別是l1、l2,則直線l1與l2必定相交于點(s,t).

③用獨立性檢驗(2×2列聯(lián)表法)來考察兩個分類變量是否有關系時,算出的隨機變量K2的值越大,說明“X與Y有關系”成立的可能性越大.

④命題P:x∈R,使得x2+x+1<0,則P:x∈R均有x2+x+1≥0.

其中結論正確的序號為________.(請寫出你認為正確的所有結論的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆福建省晉江市高二下第一次月考文數(shù)試卷(解析版) 題型:解答題

觀察下列兩個結論:

(Ⅰ)若,且,則;

(Ⅱ)若,且,則;

先證明結論(Ⅱ),再類比(Ⅰ)(Ⅱ)結論,請你寫出一個關于個正數(shù)的結論?(寫出結論,不必證明。

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年福建省泉州市晉江市養(yǎng)正中學高二(下)第一次月考數(shù)學試卷(文科)(解析版) 題型:解答題

觀察下列兩個結論:
(Ⅰ)若a,b∈R+,且a+b=1,則;
(Ⅱ)若a,b,c∈R+,且a+b+c=1,則;先證明結論(Ⅱ),再類比(Ⅰ)(Ⅱ)結論,請你寫出一個關于n個正數(shù)a1,a2,a3,…,an的結論?(寫出結論,不必證明.)

查看答案和解析>>

同步練習冊答案