設(shè)A、B分別為橢圓=1(a、b>0)的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)P為右準(zhǔn)線上不同于點(4,0)的任意一點,若直線AP、BP分別與橢圓相交于異于A、B的點M、N,證明點B在以MN為直徑的圓內(nèi).
(1)解:依題意得a=2c, 從而b=. 故橢圓方程為=1. (2)解法一:由(1)得A(-2,0),B(2,0). 設(shè)M(x0,y0). ∵M(jìn)點在橢圓上,∴y02=(4-x02) 、 又M點異于頂點A、B,∴-2<x0<2. 由P、A、M三點共線可得P(4,). 從而=(x0-2,y0),=(2,). ∴=2x0-4+(x02-4+3y0) ② 將①式代入②式化簡得(2-x0). ∵2-x0>0,∴>0. 于是∠MBP為銳角,從而∠MBN為鈍角,故點B在以MN為直徑的圓內(nèi). 解法二:由(1)得A(-2,0),B(2,0). 設(shè)P(4,λ)(λ≠0),M(x1,y1),N(x2,y2), 則直線AP的方程為y=(x+2),直線BP的方程為y=(x-2). ∵點M、N分別在直線AP、BP上, ∴y1=(x1+2),y2=(x2-2). 從而y1y2=(x1+2)(x2-2) 、 聯(lián)立消去y, 得(27+λ2)x2+4λ2x+4(λ2-27)=0. ∵x1,-2是方程的兩根, ∴(-2)·x1=,即x1= 、 又=(x1-2,y1)·(x2-2,y2)=(x1-2)(x2-2)+y1y2 、 于是由③④式代入⑤式化簡可得(x2-2). ∵N點在橢圓上,且異于頂點A、B. ∴x2-2<0. 又∵λ≠0,∴>0. 從而<0. 故∠MBN為鈍角,即點B在以MN為直徑的圓內(nèi). 解法三:由(1)得A(-2,0),B(2,0). 設(shè)M(x1,y1),N(x2,y2), 則-2<x1<2,-2<x2<2. 又MN的中點Q的坐標(biāo)為(), ∴|BQ|2-|MN|2=()2+()2-[(x1-x2)2+(y1-y2)2]. 化簡得|BQ|2-|MN|2=(x1-2)(x2-2)+y1y2 、 直線AP的方程為y=(x+2),直線BP的方程為y=(x-2). ∵點P在準(zhǔn)線x=4上,∴, 即y2= 、 又∵M(jìn)點在橢圓上, ∴=1,即y12=(4-x12) ⑧ 于是將⑦⑧式代入⑥式化簡可得|BQ|2-|MN|2=(2-x1)(x2-2)<0. 從而B在以MN為直徑的圓內(nèi). |
科目:高中數(shù)學(xué) 來源:全優(yōu)設(shè)計選修數(shù)學(xué)-1-1蘇教版 蘇教版 題型:044
設(shè)A、B分別為橢圓=1(a,b>0)的左、右頂點,橢圓長半軸的長等于焦距,且x=4為它的右準(zhǔn)線.
(1)求橢圓的方程;
(2)設(shè)P為右準(zhǔn)線上不同于點(4,0)的任意一點,若直線AP、BP分別與橢圓相交于異于A、B的點M、N,證明點B在以MN為直徑的圓內(nèi).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江蘇省揚(yáng)州中學(xué)2012屆高三4月雙周練習(xí)(一)數(shù)學(xué)試題 題型:022
設(shè)A、B分別為橢圓和雙曲線的公共頂點,P、M分別是雙曲線和橢圓上不同于A、B的兩動點,且滿足,其中λ∈R,|λ|>1,設(shè)直線AP、BP、AM、BM的斜率分別為k1、k2、k3、k4,則k1+k2=5,則k3+k4=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試天津卷文數(shù) 題型:044
設(shè)橢圓+=1(a>b>0)的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)A,B分別為橢圓的左右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若·+·=8,求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013年普通高等學(xué)校招生全國統(tǒng)一考試天津卷理數(shù) 題型:044
設(shè)橢圓的左焦點為F,離心率為,過點F且與x軸垂直的直線被橢圓截得的線段長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)A,B分別為橢圓的左右頂點,過點F且斜率為k的直線與橢圓交于C,D兩點.若·+·=8,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com