【題目】如圖所示,在四棱錐P﹣ABCD中,底面ABCD為矩形,PA⊥平面ABCD,點E在線段PC上,PC⊥平面BDE.

(1)證明:BD⊥平面PAC;
(2)若PA=1,AD=2,求二面角B﹣PC﹣A的正切值.

【答案】
(1)解:∵PA⊥平面ABCD

∴PA⊥BD

∵PC⊥平面BDE

∴PC⊥BD,又PA∩PC=P

∴BD⊥平面PAC


(2)解:設AC與BD交點為O,連OE

∵PC⊥平面BDE

∴PC⊥平面BOE

∴PC⊥BE

∴∠BEO為二面角B﹣PC﹣A的平面角

∵BD⊥平面PAC

∴BD⊥AC

∴四邊形ABCD為正方形,又PA=1,AD=2,可得BD=AC=2 ,PC=3

∴OC=

在△PAC∽△OEC中,

又BD⊥OE,

∴二面角B﹣PC﹣A的平面角的正切值為3


【解析】(1)由題設條件及圖知,可先由線面垂直的性質(zhì)證出PA⊥BD與PC⊥BD,再由線面垂直的判定定理證明線面垂直即可;(2)由圖可令AC與BD的交點為O,連接OE,證明出∠BEO為二面角B﹣PC﹣A的平面角,然后在其所在的三角形中解三角形即可求出二面角的正切值.
【考點精析】根據(jù)題目的已知條件,利用直線與平面垂直的判定的相關知識可以得到問題的答案,需要掌握一條直線與一個平面內(nèi)的兩條相交直線都垂直,則該直線與此平面垂直;注意點:a)定理中的“兩條相交直線”這一條件不可忽視;b)定理體現(xiàn)了“直線與平面垂直”與“直線與直線垂直”互相轉(zhuǎn)化的數(shù)學思想.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】今年的國慶假期是實施免收小型客車高速通行費后的第一個重大節(jié)假日,有一個群名為“天狼星”的自駕游車隊.該車隊是由31輛車身長都約為5m(以5m計算)的同一車型組成的,行程中經(jīng)過一個長為2725m的隧道(通過該隧道的車速不能超過25m/s),勻
速通過該隧道,設車隊的速度為xm/s,根據(jù)安全和車流的需要,當0<x≤12時,相鄰兩車之間保持20m的距離;當12<x≤25時,相鄰兩車之間保持( )m的距離.自第1輛車車頭進入隧道至第31輛車車尾離開隧道所用的時間為y(s).
(1)將y表示為x的函數(shù);
(2)求該車隊通過隧道時間y的最小值及此時車隊的速度.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c都是正數(shù),
(1)若a+c=1,試比較a3+a2c+ab2+b2c與a2b+abc的大。
(2)若a2+b2+c2=1,求證: ≥3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓E: 的右焦點為F(3,0),過點F的直線交橢圓E于A、B兩點.若AB的中點坐標為(1,﹣1),則E的方程為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正方體ABCD﹣A′B′C′D′的棱長為1,E、F分別是棱AA′,CC′的中點,過直線EF的平面分別與棱BB′、DD′交于M、N,設BM=x,x∈[0,1],給出以下四個命題:
①平面MENF⊥平面BDD′B′;
②當且僅當x= 時,四邊形MENF的面積最;
③四邊形MENF周長l=f(x),x∈0,1]是單調(diào)函數(shù);
④四棱錐C′﹣MENF的體積v=h(x)為常函數(shù);
以上命題中真命題的序號為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某種多面體玩具共有12個面,在其十二個面上分別標有數(shù)字1,2,3,…,12.若該玩具質(zhì)地均勻,則拋擲該玩具后,任何一個數(shù)字所在的面朝上的概率均相等.

為檢驗某批玩具是否合格,制定檢驗標準為:多次拋擲該玩具,并記錄朝上的面上標記的數(shù)字,若各數(shù)字出現(xiàn)的頻率的極差不超過0.05.則認為該玩具合格.

(1)對某批玩具中隨機抽取20件進行檢驗,將每個玩具各面數(shù)字出現(xiàn)頻率的極差繪制成莖葉圖(如圖所示),試估計這批玩具的合格率;

(2)現(xiàn)有該種類玩具一個,將其拋擲100次,并記錄朝上的一面標記的數(shù)字,得到如下數(shù)據(jù):

朝上面的數(shù)字

1

2

3

4

5

6

7

8

9

10

11

12

次數(shù)

9

7

8

6

10

9

9

8

10

9

7

8

1)試判定該玩具是否合格;

2)將該玩具拋擲一次,記事件:向上的面標記數(shù)字是完全平方數(shù)(能寫成整數(shù)的平方形式的數(shù),如,9為完全平方數(shù));事件:向上的面標記的數(shù)字不超過4.試根據(jù)上表中的數(shù)據(jù),完成以下列聯(lián)表(其中表示的對立事件),并回答在犯錯誤的概率不超過0.01的前提下,能否認為事件與事件有關.

合計

合計

100

(參考公式及數(shù)據(jù): ,

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】定義實數(shù)a,b間的計算法則如下a△b=
(1)計算2△(3△1);
(2)對0<x<z<y的任意實數(shù)x,y,z,判斷x△(y△z)與(x△y)△z的大小,并說明理由;
(3)寫出函數(shù)y=(1△x)+(2△x),x∈R的解析式,作出該函數(shù)的圖象,并寫出該函數(shù)單調(diào)遞增區(qū)間和值域(只需要寫出結果).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設函數(shù)f(x)=x3﹣6x+5,x∈R.
(1)求f(x)的單調(diào)區(qū)間和極值;
(2)求曲線f(x)過點(1,0)的切線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,A,B是銳角,c=10,且
(1)證明角C=90°;
(2)求△ABC的面積.

查看答案和解析>>

同步練習冊答案