【題目】某中學(xué)對(duì)高三年級(jí)的學(xué)生進(jìn)行體質(zhì)測試,已知高三、一班共有學(xué)生30人,測試立定跳遠(yuǎn)的成績用莖葉圖表示如下(單位:):

 

 

 

 

 

 

 

 

 

7

16

5

7

8

9

9

9

8

17

1

8

4

5

2

9

3

5

6

18

0

2

7

5

4

1

2

4

19

0

1

1

8

5

20

21

22

男生成績不低于的定義為“合格”,成績低于的定義為“不合格”;女生成績不低于的定義為“合格”,成績低于的定義為“不合格”.

(1) 求女生立定跳遠(yuǎn)成績的中位數(shù);

(2) 若在男生中按成績是否合格進(jìn)行分層抽樣,抽取6個(gè)人,求抽取成績“合格”的男生人數(shù);

(3) 若從(2)問所抽取的6人中任選2人,求這2人中恰有1人成績“合格”的概率.

【答案】(1)166.5cm(2)4人(3)

【解析】

(1)由莖葉圖能求出女生立定跳遠(yuǎn)成績的中位數(shù).

(2)男生成績“合格”的有8人,“不合格”的有4人,用分層抽樣的方法,能求出其中成績“合格”的學(xué)生應(yīng)抽取的人數(shù).

(3)由(2)可知6人中,4人合格,2人不合格,設(shè)合格學(xué)生為A,B,C,D,不合格學(xué)生為,利用列舉法能求出這2人中恰有1人成績“合格”的概率.

(1) 女生立定跳遠(yuǎn)成績的中位數(shù)cm.

(2)男生中成績“合格”和“不合格”人數(shù)比為,用分層抽樣的方法抽取6個(gè)人,

則抽取成績“合格”人數(shù)為4人;

(3)由(2)設(shè)成績“合格”的4人為A,B,CD,成績“不合格”的2人為,從中選出2人有(A,B),(A,C),(A,D),(A,),(A,),(B,C),(B,D),(B,),(B,),(C,D),(C,),(C,),(D,),(D,),(),共15種,

其中恰有1人成績“合格”的有(A,),(A,),(B,),(B,),(C,),(C,),(D,),(D,),共8種,故所求事件概率為.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了研究某種微生物的生長規(guī)律,研究小組在實(shí)驗(yàn)室對(duì)該種微生物進(jìn)行培育實(shí)驗(yàn).前三天觀測的該微生物的群落單位數(shù)量分別為12,16,24.根據(jù)實(shí)驗(yàn)數(shù)據(jù),用y表示第天的群落單位數(shù)量,某研究員提出了兩種函數(shù)模型;;,其中a,b,cp,qr都是常數(shù).

1)根據(jù)實(shí)驗(yàn)數(shù)據(jù),分別求出這兩種函數(shù)模型的解析式;

2)若第4天和第5天觀測的群落單位數(shù)量分別為4072,請從這兩個(gè)函數(shù)模型中選出更合適的一個(gè),并計(jì)算從第幾天開始該微生物群落的單位數(shù)量超過1000

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某研究性學(xué)習(xí)小組對(duì)春季晝夜溫差大小與某花卉種子發(fā)芽多少之間的關(guān)系進(jìn)行硏究,他們分別記錄了31日至35日的每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù),得到如下資料:

日期

31

32

33

34

35

溫差x

8

11

13

12

10

發(fā)芽數(shù)y(顆)

22

27

31

35

26

1)從31日至35日中任選2天,記發(fā)芽的種子數(shù)分別為m,n,求事件m,n均不小于27”的概率.

2)若選取的是31日與35日的兩組數(shù)據(jù),請根據(jù)32日至34日的數(shù)據(jù),求出y關(guān)于x的線性回歸方程

3)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均不超過2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(2)中所得的線性回歸方程是否可靠?

(參考公式:回歸直線的方程是,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分12分)在中,角所對(duì)的邊分別為,已知,

1)求的值;

2)求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于不等式,其中

1)試求不等式的解集;

2)對(duì)于不等式的解集,若滿足(其中為整數(shù)集).試探究集合能否為有限集?若能,求出使得集合中元素個(gè)數(shù)最少時(shí)的取值范圍,并用列舉法表示集合;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點(diǎn),點(diǎn),分別為線段、上的動(dòng)點(diǎn),且滿足.

1)若,求點(diǎn)的坐標(biāo);

2)設(shè)點(diǎn)的坐標(biāo)為,求的外接圓的一般方程,并求的外接圓所過定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】漢代數(shù)學(xué)家趙爽在注解《周髀算經(jīng)》時(shí)給出的趙爽弦圖是我國古代數(shù)學(xué)的瑰寶.如圖所示的弦圖中,由四個(gè)全等的直角三角形和一個(gè)正方形構(gòu)成.現(xiàn)有五種不同的顏色可供涂色,要求相鄰的區(qū)域不能用同一種顏色,則不同的涂色方案有(

A.180B.192C.420D.480

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為6,且橢圓與圓的公共弦長為

(1)求橢圓的方程;

(2)過點(diǎn)P(0,1)作斜率為的直線與橢圓交于兩點(diǎn),,試判斷在軸上是否存在點(diǎn),使得為以為底邊的等腰三角形,若存在,求出點(diǎn)的橫坐標(biāo)的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】2名女生、4名男生排成一排,求:

12名女生不相鄰的不同排法共有多少種?

2)女生甲必須排在女生乙的左邊(不一定相鄰)的不同排法共有多少種?

查看答案和解析>>

同步練習(xí)冊答案