分析 由題意知BAA-1=EA-1⇒B=A-1,所以矩陣B的特征多項(xiàng)式為f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{-3}&{λ-2}\end{array}|$=λ2-3λ-4;
解答 解:∵BA=$[\begin{array}{l}{1}&{0}\\{0}&{1}\end{array}]$,∴BAA-1=EA-1⇒B=A-1;
∵A-1=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$,∴B=$[\begin{array}{l}{1}&{2}\\{3}&{2}\end{array}]$;
∴矩陣B的特征多項(xiàng)式為f(λ)=$|\begin{array}{l}{λ-1}&{-2}\\{-3}&{λ-2}\end{array}|$=λ2-3λ-4;
由f(λ)=0,解得λ1=-1,λ2=4;
∴矩陣B的特征值為-1和4.
點(diǎn)評 本題主要考查了矩陣與逆矩陣之間的關(guān)系,以及特征多項(xiàng)式的求法,屬基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)在($\frac{1}{2}$,+∞)內(nèi)是增函數(shù) | B. | f(x)在($\frac{1}{2}$,+∞)內(nèi)是減函數(shù) | ||
C. | f(x)在(-∞,$\frac{1}{2}$)內(nèi)是增函數(shù) | D. | f(x)在(-∞,$\frac{1}{2}$)內(nèi)是減函數(shù) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com