已知A={a,b,c},B={-1,0,1},映射fA→B滿足f(a)+f(b)=f(c),求映射fA→B的個數(shù).

答案:7
解析:

可讓A中元素在f下對應(yīng)B中的一個,兩個或三個,并且滿足f(a)f(b)=f(c),需分類討論.

解:(1)當(dāng)A中三個元素都對應(yīng)0時,則f(a)f(b)=00=0=f(c)有一種映射.

(2)當(dāng)A中三個元素對應(yīng)B中兩個時,滿足f(a)f(b)=f(c)的映射有4個,分別為10=101=1,(1)0=10(1)=1

(3)當(dāng)A中的三個元素對應(yīng)B中的三個元素時,有兩個映射,分別是:(1)1=0,1(1)=0

因此滿足題設(shè)條件的映射有7個.


提示:

理解映射的概念是解決本題的關(guān)鍵;另外,依映射的定義,若集合A中有m個不同元素,集合B中有n個不同元素,則AB共有個映射,BA共有個映射.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(1)選修4-2:矩陣與變換
已知矩陣A=
33
cd
,若矩陣A屬于特征值6的一個特征向量為
a1
=
1
1
,屬于特征值1的一個特征向量為
a2
=
3
-2
,求矩陣A.
(2)選修4-4:坐標(biāo)與參數(shù)方程
以直角坐標(biāo)系的原點為極點,x軸正半軸為極軸,并在兩種坐標(biāo)系中取相同的長度單位.已知直線l的極坐標(biāo)方程為psin(θ-
π
3
)=6,圓C的參數(shù)方程為
x=10cosθ
y=10sinθ
,(θ為參數(shù)),求直線l被圓C截得的弦長.
(3)選修4-5:不等式選講
已知實數(shù)a,b,c,d滿足a+b+c+d=3,a2+2b2+3c2+6d2=5試求a的最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c為直線,α、β、γ為平面,則下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向
a
=(sin(x+
π
6
),
3
cos(x+
π
6
))
,
b
=(sin(x+
π
6
),sin(x+
π
6
))
,記f(x)=
a
b
,在銳角三角形ABC的三個內(nèi)角A,B,C所對的邊分別是a,b,c,若f(C)=1
(1)求C的大。
(2)若c=
7
,三角形ABC的面積為
3
3
2
,求a+b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a=log2
4
5
,b=(
1
2
)
4
5
,c=lg3,則(  )
A、a<b<c
B、c<a<b
C、a<c<b
D、b<c<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:013

選擇題:

(1)已知,,則

[  ]

(A)A、BD三點共線

(B)A、BC三點共線

(C)B、CD三點共線

(D)A、CD三點共線

(2)已知正方形ABCD的邊長為1,,,,則等于

[  ]

(A)0

(B)3

(C)

(D)

(3)已知,,,且四邊形ABCD為平行四邊形,則

[  ]

(A)abcd0

(B)abcd0

(C)abcd0

(D)abcd0

(4)已知D、E、F分別是△ABC的邊BCCA、AB的中點,且,,則①;②;③;④

中正確的等式的個數(shù)為

[  ]

(A)1

(B)2

(C)3

(D)4

(5),是夾角為60°的兩個單位向量,則的夾角為

[  ]

(A)30°

(B)60°

(C)120°

(D)150°

(6)若向量a、b、c兩兩所成的角相等,且,,,則等于

[  ]

(A)2

(B)5

(C)25

(D)

(7)等邊三角形ABC的邊長為1,,,那么a·bb·cc·a等于

[  ]

(A)3

(B)3

(C)

(D)

查看答案和解析>>

同步練習(xí)冊答案