已知A、B、C為△ABC的三個內(nèi)角,且其對邊分別為a、b、c,且
(1)求角A的值;(2)若,求△ABC的面積.
【答案】分析:(1)先根據(jù)余弦函數(shù)的二倍角公式化簡求出cosA的值,再由三角形內(nèi)角的范圍可求出角A的值.
(2)先由余弦定理求出bc的值,再代入三角形的面積公式可得答案.
解答:解:(1)由2,得1+cosA+cosA=0,即cosA=-,
∵A為△ABC的內(nèi)角,∴A=,
(2)由余弦定理:a2=b2+c2-2bccosA∴a2=(b+c)2-bc
即12=42-bc∴bc=4

點評:本題主要考查余弦定理的應(yīng)用和余弦函數(shù)的二倍角公式.三角函數(shù)部分公式比較多很容易記混,對公式的記憶一定要引起重視.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c為直線,α、β、γ為平面,則下列命題中正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(1)已知a,b,c為兩兩不相等的實數(shù),求證:a2+b2+c2>ab+bc+ca;
(2)設(shè)a,b,c∈(0,+∞),且a+b+c=1,求證(
1
a
-1)(
1
b
-1)(
1
c
-1)≥8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C為△ABC的三內(nèi)角,且其對分別為a、b、c,若A=120°,a=2
3
,b+c=4,則△ABC的面積為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C為△ABC的三個內(nèi)角,設(shè)f(A,B)=sin22A+cos22B-
3
sin2A-cos2B+2

(1)當(dāng)f(A,B)取得最小值時,求C的大;
(2)當(dāng)C=
π
2
時,記h(A)=f(A,B),試求h(A)的表達式及定義域;
(3)在(2)的條件下,是否存在向量
p
,使得函數(shù)h(A)的圖象按向量
p
平移后得到函數(shù)g(A)=2cos2A的圖象?若存在,求出向量
p
的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a,b,c為三條不同的直線,且a?平面M,b?平面N,M∩N=c,則下面四個命題中正確的是( 。

查看答案和解析>>

同步練習(xí)冊答案