、已知是函數(shù)的一個(gè)極值點(diǎn).
(Ⅰ)求;(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)若直線與函數(shù)的圖象有3個(gè)交點(diǎn),求的取值范圍.
(Ⅰ)
(Ⅱ)的單調(diào)增區(qū)間是的單調(diào)減區(qū)間是
(Ⅲ).
(I)根據(jù)x=3是方程的根,建立關(guān)于a的方程求出a的值.
(II)由(I)知,根據(jù)導(dǎo)數(shù)研究f(x)的單調(diào)性和極值,畫出圖像,從圖像上觀察直線y=b與函數(shù)y=f(x)的圖像有3個(gè)交點(diǎn)時(shí),b應(yīng)滿足的條件.
解:(Ⅰ)因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230820924919.png" style="vertical-align:middle;" />
所以 因此
(Ⅱ)由(Ⅰ)知,
   
當(dāng)時(shí),當(dāng)時(shí),
所以的單調(diào)增區(qū)間是的單調(diào)減區(qū)間是
(Ⅲ)由(Ⅱ)知,內(nèi)單調(diào)增加,在內(nèi)單調(diào)減少,在上單調(diào)增加,且當(dāng)時(shí),
所以的極大值為,極小值為
因此

所以在的三個(gè)單調(diào)區(qū)間直線的圖象各有一個(gè)交點(diǎn),當(dāng)且僅當(dāng)
因此,的取值范圍為.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分14分)
已知函數(shù),(e為自然對(duì)數(shù)的底數(shù))
(Ⅰ)當(dāng)a=1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在上無(wú)零點(diǎn),求a的最小值;
(III)若對(duì)任意給定的,在上總存在兩個(gè)不同的,使得成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)。
???(1)若函數(shù)是定義域上的單調(diào)函數(shù),求實(shí)數(shù)的取值范圍;
???(2)求函數(shù)的極值點(diǎn)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知為奇函數(shù),
(1)求實(shí)數(shù)a的值。
(2)若上恒成立,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的單調(diào)遞減區(qū)間是
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

.已知二次函數(shù)的導(dǎo)函數(shù)為,,f(x)與x軸恰有一個(gè)交點(diǎn),則 的最小值為 (   )
A.2B.C.3D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)a為實(shí)數(shù), 函數(shù)f(x)=x3-x2-x+a.
(1)求f(x)的極值;
(2)若曲線y=f(x)與x軸僅有一個(gè)交點(diǎn), 求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題9分)
求函數(shù)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

、函數(shù)是減函數(shù)的區(qū)間為(  )
A.B.C.D.(0,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案