年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:浙江省六校聯(lián)盟2012屆高三第一次聯(lián)考數(shù)學(xué)文科試題 題型:044
如下圖(圖1)等腰梯形PBCD,A為PD上一點(diǎn),且AB⊥PD,AB=BC,AD=2BC,沿著AB折疊使得二面角P-AB-D為60°的二面角,連結(jié)PC、PD,在AD上取一點(diǎn)E使得3AE=ED,連結(jié)PE得到如下圖(圖2)的一個幾何體.
(1)求證:平面PAB⊥平面PCD;
(2)求PE與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:江西省宜春市2012屆高三模擬考試數(shù)學(xué)文科試題 題型:044
如下圖(圖1)等腰梯形PBCD,A為PD上一點(diǎn),且AB⊥PD,AB=BC,AD=2BC,沿著AB折疊使得二面角P-AB-D為60°的二面角,連結(jié)PC、PD,在AD上取一點(diǎn)E使得3AE=ED,連結(jié)PE得到如下圖(圖2)的一個幾何體.
(Ⅰ)求證:平面PAB⊥平面PCD;
(Ⅱ)設(shè)PA=2,求點(diǎn)E到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年浙江省六校高三第一次聯(lián)考文科數(shù)學(xué) 題型:解答題
(本題滿分14分)
如下圖(圖1)等腰梯形PBCD,A為PD上一點(diǎn),且AB⊥PD,AB=BC,AD=2BC,沿著AB折疊使得二面角P-AB-D為的二面角,連結(jié)PC、PD,在AD上取一點(diǎn)E使得3AE=ED,連結(jié)PE得到如下圖(圖2)的一個幾何體.
(1)求證:平面PAB平面PCD;
(2)求PE與平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:浙江省2011-2012學(xué)年高三六校聯(lián)考數(shù)學(xué)(文科)試卷 題型:解答題
如下圖(圖1)等腰梯形PBCD,A為PD上一點(diǎn),且AB⊥PD,AB=BC,AD=2BC,沿著AB折疊使得二面角P-AB-D為的二面角,連結(jié)PC、PD,在AD上取一點(diǎn)E使得3AE=ED,連結(jié)PE得到如下圖(圖2)的一個幾何體.
(1)求證:平面PAB平面PCD;
(2)求PE與平面PBC所成角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com