8.化簡$\frac{sin(-x)cos(π-x)}{sin(π+x)cos(2π-x)}-\frac{sin(π-x)cos(π+x)}{{cos(\frac{π}{2}-x)cos(-x)}}$.

分析 運用三角函數(shù)的誘導公式,化簡即可得到所求值.

解答 解:$\frac{sin(-x)cos(π-x)}{sin(π+x)cos(2π-x)}-\frac{sin(π-x)cos(π+x)}{{cos(\frac{π}{2}-x)cos(-x)}}$
=$\frac{(-sinx)(-cosx)}{(-sinx)cosx}$-$\frac{sinx(-cosx)}{sinxcosx}$=-1+1=0.

點評 本題考查三角函數(shù)的求值,注意運用誘導公式,考查化簡能力,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.下列函數(shù)滿足在定義域上為減函數(shù)且為奇函數(shù)的是( 。
A.y=cos2xB.y=lg|x|C.y=-xD.y=$\frac{1}{x}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若a<b<0,則下列不等式成立的是( 。
A.$\frac{1}{a}<\frac{1}$B.$0<\frac{a}<1$C.ab>b2D.$\frac{a}>\frac{a}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知定義在R上的函數(shù)f(x)為單調(diào)函數(shù),且對任意x∈R,恒有f(f(x)-2x)=-$\frac{1}{2}$,若f(x0)=0,則x0的值是( 。
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如果一個球的外切圓錐的高是這個球的半徑的3倍,則圓錐的側(cè)面積和球的表面積之比為( 。
A.9:4B.4:3C.3:1D.3:2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知關于x的方程2x2-mx+1=0,$x∈[{\frac{1}{2},4}]$存在兩個不同的實根,則實數(shù)m的取值范圍為(  )
A.(2,3]B.$(2\sqrt{2},8\frac{1}{4})$C.$[3,8\frac{1}{4}]$D.$(2\sqrt{2},3]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.冪函數(shù)f(x)=(t3-t+1)x3t+1是偶函數(shù),且在(0,1)上單調(diào)遞增,則f(2)=16.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.三棱錐P-ABC的四個頂點都在球O的球面上,已知PA、PB、PC兩兩垂直,PA=1,PB+PC=4,當三棱錐的體積最大時,球心O到平面ABC的距離是( 。
A.$\frac{\sqrt{6}}{12}$B.$\frac{\sqrt{6}}{6}$C.$\frac{\sqrt{6}}{3}$D.$\frac{3}{2}$-$\frac{\sqrt{6}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.如圖,ABCD是菱形,PA⊥平面ABCD,PA=AD=2,∠BAD=60°.
(Ⅰ)求證:平面PBD⊥平面PAC;
(Ⅱ)求點A到平面PBD的距離.

查看答案和解析>>

同步練習冊答案