(本小題滿分14分)
已知拋物線的頂點為坐標原點,焦點在軸上. 且經(jīng)過點,
(1)求拋物線的方程;
(2)若動直線過點,交拋物線于兩點,是否存在垂直于軸的直線被以為直徑的圓截得的弦長為定值?若存在,求出的方程;若不存在,說明理由.
科目:高中數(shù)學 來源: 題型:解答題
(本小題14分)已知橢圓的離心率為,以原點為圓心,橢圓短半軸長為半徑的圓與直線相切,分別是橢圓的左右兩個頂點,為橢圓上的動點.
(1)求橢圓的標準方程;
(2)若與均不重合,設(shè)直線的斜率分別為,求的值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題12分) 將圓O: 上各點的縱坐標變?yōu)樵瓉淼囊话?(橫坐標不變), 得到曲線、拋物線的焦點是直線y=x-1與x軸的交點.
(1)求,的標準方程;
(2)請問是否存在直線滿足條件:① 過的焦點;②與交于不同兩
點,,且滿足?若存在,求出直線的方程; 若不存在,說明
理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
已知雙曲線C的中心在原點,拋物線的焦點是雙曲線C的一個焦點,且雙曲線經(jīng)過點,又知直線與雙曲線C相交于A、B兩點.
(1)求雙曲線C的方程;
(2)若,求實數(shù)k值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(12分)如圖,已知橢圓(a>b>0)的離心率,過點 和的直線與原點的距離為.
(1)求橢圓的方程;
(2)已知定點,若直線與橢圓交于、兩 點.問:是否存在的值,
使以為直徑的圓過點?請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)已知橢圓的中心在原點,焦點在軸上,離心率為,且經(jīng)過點,直線交橢圓于不同的兩點.
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點,求證:直線與軸圍成一個等腰三角形.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分) 求滿足下列條件的橢圓的標準方程.
(1)焦點在坐標軸上,且經(jīng)過兩點;
(2)經(jīng)過點(2,-3)且與橢圓具有共同的焦點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com