函數(shù)是定義在上的奇函數(shù),且。
(1)求實數(shù)a,b,并確定函數(shù)的解析式;
(2)判斷在(-1,1)上的單調性,并用定義證明你的結論;
(3)寫出的單調減區(qū)間,并判斷有無最大值或最小值?如有,寫出最大值或最小值。(本小問不需要說明理由)
(1)(2)見解析(3)單調減區(qū)間為x=-1時,,當x=1時,。
本試題主要考查了函數(shù)的解析式和奇偶性和單調性的綜合運用。第一問中,利用函數(shù)是定義在上的奇函數(shù),且。
解得,
(2)中,利用單調性的定義,作差變形判定可得單調遞增函數(shù)。
(3)中,由2知,單調減區(qū)間為,并由此得到當,x=-1時,,當x=1時,
解:(1)是奇函數(shù),。
,………………2分
,又,
(2)任取,且,
,………………6分
,
,,,,
在(-1,1)上是增函數(shù)!8分
(3)單調減區(qū)間為…………………………………………10分
當,x=-1時,,當x=1時,。
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

函數(shù)的單調增區(qū)間為
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設f(x)是定義在R上的奇函數(shù),且當x≥0時,f(x)=x2,若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實數(shù)t的取值范圍是
A.[√2,+∞) B.[2,+∞)
C.(0,2]D.[-√2,-1]∪[√2,0]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若實數(shù)滿足恒成立,則函數(shù)的單調減區(qū)間為。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)).
(1)若,上是單調增函數(shù),求的取值范圍;
(2)若,求方程上解的個數(shù).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在上的奇函數(shù)滿足,,且當
時,有,則的值為(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(本題滿分16分)已知函數(shù)
(Ⅰ)當時,利用函數(shù)單調性的定義證明在區(qū)間上是單調減函數(shù);
(Ⅱ)若函數(shù)在區(qū)間上是單調增函數(shù),求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的偶函數(shù)滿足,當時,,則 (  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

定義在R上的函數(shù)上為增函數(shù),且為偶函數(shù),則下列正確的是(   )  
A.B.
C.D.

查看答案和解析>>

同步練習冊答案