已知函數(shù)f1(x)=e|x-2a+1|,f2(x)=e|x-a|+1,x∈R,1≤a≤6.

(1)若a=2,求f(x)=f1(x)+f2(x)在[2,3]上的最小值;

(2)若|f1(x)=f2(x)|=f2(x)-f1(x)對于任意的實數(shù)x恒成立,求a的取值范圍;

(3)求函數(shù)在[1,6]上的最小值.

答案:
解析:

  解:(1)對于,當且僅當,即時等號成立,∴

  (2)對于任意的實數(shù)恒成立,即對于任意的實數(shù)恒成立,亦即對于任意的實數(shù)恒成立,∴,即≤1對于任意的實數(shù)恒成立.

  又對于任意的實數(shù)恒成立,故只需≤1,解得0≤≤2,又1≤≤6,∴1≤≤2為的取值范圍.

  (3)

 、佼≤2時,由⑵知,圖象關(guān)于直線對稱(如圖2),又此時1≤≤3,故對

  ②當2<≤6時,,故

  時,,

  ;

  時,,;

  時,由,得,其中

  ,故時,,時,

  因此,時,

  令,得,且,如圖3

  (ⅰ)當,即時,;

  (ⅱ)當,即時,

  ;

  (ⅲ)當,即時,,綜上所述,說明:第⑶小題也可以通過令

  化曲為直進行研究,先求得在[1,6]上的最小值,從而最終求得在[1,6]上的最小值,使得問題的解決更為簡潔.


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:廣東省梅縣東山中學(xué)2012屆高三上學(xué)期期中考試數(shù)學(xué)文科試題 題型:013

已知函數(shù)f1(x)=ax,f2(x)=xa,f3(x)=logax(其中a>0且a≠1),在同一坐標系中畫出其中兩個函數(shù)在x≥0且y≥0的范圍內(nèi)的大致圖象,其中正確的是

[  ]
A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省紅色六校高三第二次聯(lián)考文科數(shù)學(xué)試卷 題型:選擇題

已知函數(shù)f1(x)=ax,f2(x)=xa,f3(x)=logax(其中a>0,且a≠1),在同一坐標系中畫出其中的兩個函數(shù)在第一象限內(nèi)的圖象,正確的是(  )

 

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax2+ln x(a∈R)

(Ⅰ)當a=2時,求f(x)在區(qū)間[e,e2]上的最大值和最小值;

(Ⅱ)如果函數(shù)g(x),f1(x),f2(x)在公共定義域D上,滿足f1(x)<g(x)<f2(x),那么就稱g(x)為f1(x),f2(x)的“伴隨函數(shù)”.已知函數(shù)f1(x)=x2+2ax+(1-a2)ln x,f2(x)=x2+2ax.若在區(qū)間(1,+∞)上,函數(shù)f(x)是f1(x),f2(x)的“伴隨函數(shù)”,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:江西省紅色六校2011-2012學(xué)年高三第二次聯(lián)考數(shù)學(xué)(文)試題 題型:選擇題

 已知函數(shù)f1(x)=ax,f2(x)=xa,f3(x)=logax(其中a>0,且a≠1),在同一坐標系中畫出其中的兩個函數(shù)在第一象限內(nèi)的圖象,正確的是(  )

 

查看答案和解析>>

同步練習(xí)冊答案