已知兩點(diǎn)F1(-5,0),F(xiàn)2(5,0),求與它們的距離的差的絕對(duì)值是6的點(diǎn)的軌跡.

答案:
解析:

  解:根據(jù)雙曲線定義,所求點(diǎn)的軌跡是雙曲線,且以F1、F2為焦點(diǎn),

  ∵c=5,a=3,

  ∴b2=c2-a2=52-32=42

  ∴所求的軌跡是雙曲線,方程為

  分析:?jiǎn)栴}條件符合雙曲線定義,可利用定義直接寫軌跡方程.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)
的左焦點(diǎn)F1(-
5
,0)
,若橢圓上存在一點(diǎn)D,滿足以橢圓短軸為直徑的圓與線段DF1相切于線段DF1的中點(diǎn)F.
(Ⅰ)求橢圓E的方程;
(Ⅱ)已知兩點(diǎn)Q(-2,0),M(0,1)及橢圓G:
9x2
a2
+
y2
b2
=1
,過點(diǎn)Q作斜率為k的直線l交橢圓G于H,K兩點(diǎn),設(shè)線段HK的中點(diǎn)為N,連接MN,試問當(dāng)k為何值時(shí),直線MN過橢圓G的頂點(diǎn)?
(Ⅲ) 過坐標(biāo)原點(diǎn)O的直線交橢圓W:
9x2
2a2
+
4y2
b2
=1
于P、A兩點(diǎn),其中P在第一象限,過P作x軸的垂線,垂足為C,連接AC并延長(zhǎng)交橢圓W于B,求證:PA⊥PB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:044

已知兩點(diǎn)F1(-5,0)、F2(5,0),求與它們的距離差的絕對(duì)值是6的點(diǎn)的軌跡。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

已知兩點(diǎn)F1(-5,0)、F2(5,0),求與它們的距離差的絕對(duì)值是6的點(diǎn)的軌跡。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)平面xoy中,已知點(diǎn)F1(-5,0)與點(diǎn)F2(5,0),點(diǎn)P為坐標(biāo)平面xoy上的一個(gè)動(dòng)點(diǎn),直線PF1與PF2的斜率數(shù)學(xué)公式都存在,且數(shù)學(xué)公式為一個(gè)常數(shù).
(1)求動(dòng)點(diǎn)P的軌跡T的方程,并說明軌跡T是什么樣的曲線.
(2)設(shè)A、B是曲線T上關(guān)于原點(diǎn)對(duì)稱的任意兩點(diǎn),點(diǎn)C為曲線T上異于點(diǎn)A、B的另一任意點(diǎn),且直線AC與BC的斜率kAC與kBC都存在,若數(shù)學(xué)公式,求常數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案