18.已知等差數(shù)列{an}滿足${a}_{3}^{2}$+${a}_{8}^{2}$+2a3a8=9,則其前10項(xiàng)和( 。
A.15B.12C.±12D.±15

分析 根據(jù)條件結(jié)合等差數(shù)列的前n項(xiàng)和公式進(jìn)行求解即可.

解答 解:∵${a}_{3}^{2}$+${a}_{8}^{2}$+2a3a8=9,
∴(a3+a82=9,
即a3+a8=±3,
則其前10項(xiàng)和S10=$\frac{10({a}_{1}+{a}_{10})}{2}$=5(a1+a10)=5(a3+a8)=±15,
故選:D.

點(diǎn)評(píng) 本題主要考查等差數(shù)列的前n項(xiàng)和公式的計(jì)算,利用配方法求出a3+a8=±3是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.$\frac{{cos{{10}°}+\sqrt{3}sin{{10}°}}}{{\sqrt{1-cos{{80}°}}}}$的值為( 。
A.-2B.2C.$-\sqrt{2}$D..$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知實(shí)數(shù)ai,bi∈R,(i=1,2,…n),且滿足a12+a22+…an2=1,b12+b22+…bn2=1,則a1b1+a2b2+…+anbn的最大值為(  )
A.1B.2C.n$\sqrt{2}$D.2$\sqrt{n}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.函數(shù)f(x)=$\frac{\sqrt{x-2}}{x-3}$+lg$\sqrt{4-x}$的定義域是( 。
A.(2,4)B.(3,4)C.(2,3)∪(3,4]D.[2,3)∪(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知函數(shù)f(x)=$\left\{\begin{array}{l}\frac{2}{x},x≥2\\{(x-1)^3},0<x<2\end{array}\right.$若關(guān)于x的方程f(x)=kx有兩個(gè)不同的實(shí)根,則實(shí)數(shù)k的取值范圍是(  )
A.(0,$\frac{1}{2}$)B.(0,1)C.($\frac{1}{2}$,1)D.($\frac{1}{2}$,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)在某一點(diǎn)的導(dǎo)數(shù)是( 。
A.在該點(diǎn)的函數(shù)值的增量與自變量的增量的比
B.一個(gè)函數(shù)
C.一個(gè)常數(shù),不是變數(shù)
D.函數(shù)在這一點(diǎn)到它附近一點(diǎn)之間的平均變化率

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)S=cos$\frac{3π}{5}$sin$\frac{6π}{5}$,T=tan$\frac{8π}{5}$,則( 。
A.S<TB.S>TC.S=TD.S=2T

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=asinx-bcosx(a,b為常數(shù),a≠0,x∈R)的圖象關(guān)于x=$\frac{π}{4}$對(duì)稱,則函數(shù)y=f($\frac{3π}{4}$-x)是( 。
A.偶函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱
B.偶函數(shù)且它的圖象關(guān)于點(diǎn)$(\frac{3π}{2},0)$對(duì)稱
C.奇函數(shù)且它的圖象關(guān)于點(diǎn)$(\frac{3π}{2},0)$對(duì)稱
D.奇函數(shù)且它的圖象關(guān)于點(diǎn)(π,0)對(duì)稱

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.將函數(shù)f(x)=sin(ωx)(ω>0)的圖象向右平移$\frac{π}{8}$個(gè)單位得到函數(shù)g(x)的圖象,則:
(1)g(x)的解析式為g(x)=sin[ω(x-$\frac{π}{8}$)];
(2)若y=g(x)的圖象在[0,1]恰有三個(gè)最高點(diǎn),則ω的取值范圍為$\frac{20π}{8-π}$≤ω<$\frac{36π}{8-π}$..

查看答案和解析>>

同步練習(xí)冊(cè)答案