一艘海輪從A處出發(fā),以每小時20海里的速度沿南偏東40°方向直線航行.30分鐘后到達B處.在C處有一座燈塔,海輪在A處觀察燈塔,其方向是南偏東70°,在B處觀察燈塔,其方向是北偏東65°,那么B、C兩點間的距離是
 
考點:解三角形的實際應用
專題:應用題,解三角形
分析:先根據(jù)題意畫出圖象確定∠BAC、∠ABC的值,進而可得到∠ACB的值,最后根據(jù)正弦定理可得到BC的值.
解答: 解:如圖,由已知可得,∠BAC=30°,∠ABC=105°,AB=10,
從而∠ACB=45°.
在△ABC中,由正弦定理可得BC=
AB
sin45°
×sin30°
=5
2
海里.
故答案為:5
2
海里.
點評:本題主要考查正弦定理的應用,考查對基礎知識的掌握程度,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

“2a>2b”是“l(fā)na>lnb”的
 
條件(從“充分不必要”、“必要不充分”、“充要”、“既不充分也不必要”中選一個)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

一個與球心距離為
3
的平面截球所得的圓的面積為π,則球的體積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知實數(shù)x,y滿足不等式組
x≥0
x-y-3≤0
x+3y-3≤0
,則2x-y的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

用導數(shù)知識判斷方程3x-x2=0的負實數(shù)根的個數(shù)為
 
個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在三棱錐D-ABC中,AC=BC=CD=2,CD⊥平面ABC,∠ACB=90°.若其主視圖,俯視圖如圖所示,則其左視圖的面積為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

m+i
1-i
是純虛數(shù),則實數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某四棱錐的三視圖如圖所示,則該四棱錐的體積是( 。
A、27
B、9
C、3
2
D、3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若某程序框圖如圖所示,則輸出的n的值是( 。
A、3B、4C、5D、6

查看答案和解析>>

同步練習冊答案