(本題滿分12分)
如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,AA1=4,AB=5,點(diǎn)D是AB的中點(diǎn),
(I)       求證:AC⊥BC1;(II)求證:AC 1//平面CDB1
解:(I)直三棱柱ABC-A1B1C1,底面三邊長(zhǎng)AC=3,BC=4AB=5,
∴ AC⊥BC,又因?yàn)槿庵鵄BC-A1B1C1為直三棱柱內(nèi),∴AC⊥CC1 , BC CC1與的交點(diǎn)為C, ∴AC⊥平面BC C1 B1∴BC1,在平面BC C1 B1內(nèi),
∴AC⊥BC1
(II)設(shè)CB1與C1B的交點(diǎn)為E,連結(jié)DE,∵ D是AB的中點(diǎn),E是BC1的中點(diǎn),∴ DE//AC1,
∵ DE平面CDB1,AC1平面CDB1,∴ AC1//平面CDB1;
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直三棱柱ABC—A1B1C1中,AB⊥BC,P為A1C1的中點(diǎn),AB=BC=kPA。
(I)當(dāng)k=1時(shí),求證PA⊥B1C;
(II)當(dāng)k為何值時(shí),直線PA與平面BB1C1C所成的角的正弦值為,并求此時(shí)二面角A—PC—B的余弦值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本小題滿分12分)
如圖, 在直三棱柱ABC-A1B1C1中,AC=3,BC=4,,AA1=4,點(diǎn)D是AB的中點(diǎn).
(Ⅰ)求證:AC⊥BC1;
(Ⅱ)求二面角的平面角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知直線m⊥平面,直線平面,則下列命題正確的是               (   )
A.若αβ,則mnB.若αβ,則mn
C.若mn,則αβD.若nα,則αβ

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在正方體ABCD-ABCD中,與對(duì)角線AC異面的棱有(   )
A.12條B.6條C.4條D.2條

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在正方體中,分別為的中點(diǎn),則異面直線所成角是                      (   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

為一條直線,、為三個(gè)互不重合的平面,給出下面三個(gè)語(yǔ)句:
// 
//
其中正確的序號(hào)是_____

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)地球的半徑為R,在北緯45°圈上有甲、乙兩地,它們分別在東經(jīng)50°與東經(jīng)140°圈上,則甲、乙兩地的球面距離是                  

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

一內(nèi)側(cè)邊長(zhǎng)為的正方體容器被水充滿,首先把半徑為的球放入其中,再放入一個(gè)能被水完全淹沒的小球,若想使溢出的水量最大,這個(gè)小球的半徑為( )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊(cè)答案