【題目】在△ABC中,a,b,c分別是角A,B,C的對邊,且滿足 + =4cosC. (Ⅰ)求 的值;
(Ⅱ)若tanA=2tanB,求sinA的值.

【答案】解:(Ⅰ)已知等式整理得: =4cosC,即 =2abcosC,

由余弦定理得:c2=a2+b2﹣2abcosC=a2+b2 = ,

=2,

利用正弦定理化簡得: = =2;

(Ⅱ)∵tanA=2tanB,

,則sinAcosB=2sinBcosA,

∴a =2b ,

化簡得,3a2﹣3b2=c2,

聯(lián)立a2+b2=2c2得,a 、 ,

由余弦定理得,cosA= = =

由0<A<π得,sinA=


【解析】(Ⅰ)根據(jù)余弦定理和正弦定理化簡已知的式子,即可求出式子的值;(Ⅱ)利用商的關系化簡tanA=2tanB,再根據(jù)余弦定理和正弦定理化簡得到等式,聯(lián)立(1)的結論求出a、b、c的關系,利用余弦定理求出cosA,再由內角的范圍和平方關系求出sinA的值.
【考點精析】關于本題考查的正弦定理的定義和余弦定理的定義,需要了解正弦定理:;余弦定理:;;才能得出正確答案.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】設f(x)= (a∈R)在點(1,f(1))處的切線與直線2x+y+1=0垂直.
(1)若對于任意的x∈[1,+∞),f(x)≤m(x﹣1)恒成立,求實數(shù)m的取值范圍;
(2)設函數(shù)g(x)=(x+1)f(x)﹣b(x﹣1)在[1,e]上有且只有一個零點,求實數(shù)b取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點,E為PA的中點. (Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求證:OE∥平面PDC;
(Ⅲ)求面PAD與面PBC所成角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣3|+ax﹣6(a是常數(shù),a∈R). (Ⅰ)當a=1時,求不等式f(x)≥0的解集;
(Ⅱ)當x∈[﹣1,1]時,不等式f(x)<0恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)=Acos(ωx+φ)(其中A>0,ω>0,﹣ <φ< )的圖象如圖所示,為得到的g(x)=Acosωx的圖象,可以將f(x)的圖象(
A.向左平移
B.向左平移
C.向右平移
D.向右平移

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的(
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某校高一年級的A,B,C三個班共有學生120人,為調查他們的體育鍛煉情況,用分層抽樣的方法從這三個班中分別抽取4,5,6名學生進行調查. (Ⅰ)求A,B,C三個班各有學生多少人;
(Ⅱ)記從C班抽取學生的編號依次為C1 , C2 , C3 , C4 , C5 , C6 , 現(xiàn)從這6名學生中隨機抽取2名做進一步的數(shù)據(jù)分析.
(i)列出所有可能抽取的結果;
(ii)設A為事件“編號為C1和C2的2名學生中恰有一人被抽到”,求事件A發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足:an+1+(﹣1)nan=n+2(n∈N*),則S20=(
A.130
B.135
C.260
D.270

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: =1(a>b>0)的離心率為 ,且經(jīng)過點(1, ),F(xiàn)1 , F2是橢圓的左、右焦點.
(1)求橢圓C的方程;
(2)點P在橢圓上運動,求|PF1||PF2|的最大值.

查看答案和解析>>

同步練習冊答案