已知函數(shù)()的圖象為曲線.
(1)求曲線上任意一點處的切線的斜率的取值范圍;
(2)若曲線上存在兩點處的切線互相垂直,求其中一條切線與曲線的切點的橫坐標(biāo)的取值范圍;
(3)試問:是否存在一條直線與曲線C同時切于兩個不同點?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.
(本小題滿分16分)
解:(1),則,
即曲線上任意一點處的切線的斜率的取值范圍是;------------4分
(2)由(1)可知,---------------------------------------------------------6分
解得或,由或
得:;-------------------------------9分
(3)設(shè)存在過點A的切線曲線C同時切于兩點,另一切點為B,
,
則切線方程是:,
化簡得:,--------------------------11分
而過B的切線方程是,
由于兩切線是同一直線,
則有:,得,----------------------13分
又由,
即
,即
即,
得,但當(dāng)時,由得,這與矛盾。
所以不存在一條直線與曲線C同時切于兩點。----------------------------------16分
科目:高中數(shù)學(xué) 來源: 題型:
x2 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年四川省成都市高三一診模擬文科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)已知函數(shù)()的圖象為曲線.
(Ⅰ)求曲線上任意一點處的切線的斜率的取值范圍;
(Ⅱ)若曲線上存在兩點處的切線互相垂直,求其中一條切線與曲線的切點的橫坐標(biāo)的取值范圍;
(Ⅲ)試問:是否存在一條直線與曲線C同時切于兩個不同點?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年山東省濟南市高三下學(xué)期二月月考文科數(shù)學(xué)試卷 題型:選擇題
已知函數(shù),則的圖象為
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
已知函數(shù)()的圖象為曲線.
(1)求曲線上任意一點處的切線的斜率的取值范圍;
(2)若曲線上存在兩點處的切線互相垂直,求其中一條切線與曲線的切點的橫坐標(biāo)的取值范圍;
(3)試問:是否存在一條直線與曲線C同時切于兩個不同點?如果存在,求出符合條件的所有直線方程;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖北省咸寧市四校高三(上)12月月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com