若不等式x2+2xy≤a(x2+y2)對(duì)于一切正數(shù)x,y恒成立,則實(shí)數(shù)a的最小值為( )
A.2
B.
C.
D.
【答案】分析:x2+2xy≤a(x2+y2)?2xy≤(a-1)x2+ay2?(a-1)-2×+a≥0對(duì)于一切正數(shù)x,y恒成立,依題意,令f(t)=(a-1)t2-2t+a,列不等式組,解之即可得答案.
解答:解:∵x>0,y>0,
∴x2+2xy≤a(x2+y2))?2xy≤(a-1)x2+ay2?(a-1)-2×+a≥0,
令t=(t>0),f(t)=(a-1)t2-2t+a,
依題意,,解得a≥
∴實(shí)數(shù)a的最小值為
故選D.
點(diǎn)評(píng):本題考查函數(shù)恒成立問(wèn)題,考查轉(zhuǎn)化與構(gòu)造函數(shù)思想,考查解不等式組的能力,屬于難題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2+2xy≤m(2x2+y2)對(duì)于一切正數(shù)x,y恒成立,則實(shí)數(shù)m的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若不等式x2+2xy≤a(2x2+y2)對(duì)于一切正數(shù)x、y恒成立,則實(shí)數(shù)a的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•梅州一模)若不等式x2+2xy≤a(x2+y2)對(duì)于一切正數(shù)x,y恒成立,則實(shí)數(shù)a的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•臺(tái)州一模)若不等式x2+2xy≤a(6x2+y2)對(duì)任意正實(shí)數(shù)x,y恒成立,則實(shí)數(shù)a的最小值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年浙江省臺(tái)州市高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:選擇題

若不等式x2+2xy≤a(6x2+y2)對(duì)任意正實(shí)數(shù)x,y恒成立,則實(shí)數(shù)a的最小值為( )
A.2
B.1
C.
D.

查看答案和解析>>

同步練習(xí)冊(cè)答案