橢圓的左右焦點分別為F1,F(xiàn)2,弦AB過F1,若△ABF2的內切圓周長為π,A,B兩點的坐標分別為(x1,y1),(x2,y2),則|y1-y2|值為( )
A.
B.
C.
D.
【答案】分析:先根據(jù)橢圓方程求得a和c,及左右焦點的坐標,進而根據(jù)三角形內切圓面積求得內切圓半徑,進而根據(jù)△ABF2的面積=△AF1F2的面積+△BF1F2的面積求得△ABF2的面積=3|y2-y1|進而根據(jù)內切圓半徑和三角形周長求得其面積,建立等式求得|y2-y1|的值.
解答:解:橢圓:,a=5,b=4,∴c=3,
左、右焦點F1(-3,0)、F2( 3,0),
△ABF2的內切圓面積為π,則內切圓的半徑為r=,
而△ABF2的面積=△AF1F2的面積+△BF1F2的面積=×|y1|×|F1F2|+×|y2|×|F1F2|=×(|y1|+|y2|)×|F1F2|=3|y2-y1|(A、B在x軸的上下兩側)
又△ABF2的面積═×|r(|AB|+|BF2|+|F2A|=×(2a+2a)=a=5.
所以 3|y2-y1|=5,
|y2-y1|=
故選A.
點評:本題主要考查了直線與圓錐曲線的綜合問題,橢圓的簡單性質,三角形內切圓性質,本題的關鍵是求出△ABF2的面積,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知點P(0,一2),橢圓c:
x2
a2
+
y2
b2
=1
(a>b>0),橢圓的左右焦點分別為F1、F2,若三角形PF1F2的面積為2,且a2,b2的等比中項為6
2

(1)求橢圓的方程;
(2)若橢圓上有A、B兩點,使△PAB的重心為F1,求直線AB的方程;
(3)在(2)的條件下,設M為橢圓上一動點,求△MAB的面積的最大值及此時點M的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2011•重慶模擬)已知焦點在x軸上的橢圓的左右焦點分別為F1、F2,橢圓的一個頂點恰好是拋物線x2=4y的焦點,點P是橢圓上一動點且△F1F2P的面積最大值為2.
(Ⅰ)求橢圓方程;
(Ⅱ)過橢圓的右焦點F2作與坐標軸不垂直的直線交橢圓于A,B兩點,點M(m,0)是x軸上不同于原點的一個動點,求滿足條件(
MA
+
MB
)⊥
AB
的實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆廣東省“十!备呷谝淮温(lián)考文科數(shù)學試卷(解析版) 題型:解答題

已知橢圓的左右焦點分別為,且經(jīng)過點,為橢圓上的動點,以為圓心,為半徑作圓.

(1)求橢圓的方程;

(2)若圓軸有兩個交點,求點橫坐標的取值范圍.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年黑龍江省哈爾濱市高三上學期期末考試理科數(shù)學 題型:選擇題

橢圓的左右焦點分別為,弦,若的內切圓周長為,兩點的坐標分別為,則值為(  )

A.                B.           C.           D.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010年北京市朝陽區(qū)高三第二次模擬考試數(shù)學(文) 題型:解答題

(本題滿分13分)
已知橢圓的左右焦點分別.在橢圓中有一內接三角形,其頂點的坐,所在直線的斜率為
(Ⅰ)求橢圓的方程;
(Ⅱ)當的面積最大時,求直線的方程.

查看答案和解析>>

同步練習冊答案