某項(xiàng)選拔共有三輪考核,每輪設(shè)有一個(gè)問題,能正確回答問題者進(jìn)入下一輪考試,否則即被淘汰,已知某選手能正確回答第一、二、三輪問題的概率分別為且各輪問題能否正確回答互不影響。

   (I)求該選手被淘汰的概率;

(II)該選手在選拔中回答問題的個(gè)數(shù)記為,求隨機(jī)變量的分布列與數(shù)學(xué)期望。

 

 

 

 

 

 

 

 

 

 

【答案】

 解:(I)記“該選手能正確回答第i輪問題”為事件

        …………1分

該選手被淘汰的概率

            …………5分

        …………6分

   (II)的可能值為1,2,3,

   …………9分

的分布列為

1

2

3

P

            …………10分

           …………12分

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某項(xiàng)選拔共有三輪考核,每輪設(shè)有一個(gè)問題,能正確回答問題者進(jìn)入下一輪考核,否則即被淘汰,已知某選手能正確回答第一、二、三輪的問題的概率分別為
4
5
、
3
5
、
2
5
,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手被淘汰的概率;
(Ⅱ)該選手在選拔中回答問題的個(gè)數(shù)記為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年龍巖一中模擬理)(12分)

某項(xiàng)選拔共有三輪考核,每輪設(shè)有一個(gè)問題,能正確回答問題者進(jìn)入下一輪考試,否則即被淘汰,已知某選手能正確回答第一、二、三輪的問題的概率分別為、,且各輪問題能否正確回答互不影響.
    (1)求該選手被淘汰的概率;

(2)該選手在選拔中回答問題的個(gè)數(shù)記為ξ,求隨機(jī)變量ξ的分布列與數(shù)數(shù)期望.(注:本小題結(jié)果可用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(08年海拉爾二中階段考試五理) 某項(xiàng)選拔共有三輪考核,每輪設(shè)有一問題,能正確回答問題者進(jìn)入下一輪考核,否則即被淘汰.已知某選手能正確回答第一、二、三、輪的問題的概率分別為且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手被淘汰的概率;

(Ⅱ)該選手在選擇中回答問題的個(gè)數(shù)記為,求隨機(jī)變量的分布列與數(shù)學(xué)期望.

(注:本小題結(jié)果可用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某項(xiàng)選拔共有三輪考核,每輪設(shè)有一個(gè)問題,能正確回答問題者進(jìn)入下一輪考試,否則即被淘汰,已知某選手能正確回答第一、二、三輪的問題的概率分別為、,且各輪問題能否正確回答互不影響.
(Ⅰ)求該選手被淘汰的概率;

(Ⅱ)該選手在選拔中回答問題的個(gè)數(shù)記為ξ,求隨機(jī)變量ξ的分布列與數(shù)數(shù)期望.(注:本小題結(jié)果可用分?jǐn)?shù)表示)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年重慶市高三3月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題

某項(xiàng)選拔共有三輪考核,每輪設(shè)有一個(gè)問題,能正確回答問題者進(jìn)入下一輪考試,否則即被淘汰,已知某選手能正確回答第一、二、三輪的問題的概率分別為且各輪問題能否正確回答互不影響.

(Ⅰ)求該選手被淘汰的概率;

(Ⅱ)該選手在選拔中回答問題的個(gè)數(shù)記為ξ,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望.

(注:本小題結(jié)果可用分?jǐn)?shù)表示)

 

查看答案和解析>>

同步練習(xí)冊(cè)答案