(2013•德州二模)已知雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,該雙曲線與拋物線y2=16x的準線交于A,B兩點,若|AB|=6
5
,則雙曲線的方程為( 。
分析:根據(jù)雙曲線方程,求出拋物線的準線方程,利用|AB|=6
5
,即可求得結(jié)論.
解答:解:∵拋物線y2=16x,2p=16,p=8,∴
p
2
=4.
∴拋物線的準線方程為x=-4.
設(shè)雙曲線與拋物線的準線x=-4的兩個交點A(-4,y),B(-4,-y)(y>0),
則|AB|=|y-(-y)|=2y=6
5
,∴y=3
5

將x=-4,y=3
5

代入雙曲線C:
x2
a2
-
y2
b2
=1,得
16
a2
-
45
b2
=1
,①
又雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的離心率為2,∴
c
a
=2
,
a2+b2
a2
=4
,b2=3a2
由①②得a2=1,b2=3,
∴雙曲線C的方程為x2-
y2
3
=1
,
故選A.
點評:本題考查拋物線,雙曲線的幾何性質(zhì),考查學生的計算能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

(2013•德州二模)已知f(x)為R上的可導函數(shù),且對?x∈R,均有f(x)>f′(x),則有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•德州二模)某車間為了規(guī)定工時定額,需要確定加工零件所花費的時間,為此進行了5次試驗,根據(jù)收集到的數(shù)據(jù)(如下表),由最小二乘法求得回歸直線方程
y
=0.68
x
+54.6


表中有一個數(shù)據(jù)模糊不清,請你推斷出該數(shù)據(jù)的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•德州二模)為了解某校教師使用多媒體進行教學的情況,將全校200名 教師按一學期使用多媒體進行教學的次數(shù)分成了[0,9),[10,19),[20,29),[30,39),[40,49)五層.現(xiàn)采用分層抽樣從該校教師中抽取20名教師,調(diào)查了他們上學期使用多媒體進行教學的次數(shù),結(jié)果用莖葉圖表示如圖,據(jù)此可知該校一學期使用多媒體進行教學的次數(shù)在[30,39)內(nèi)的教師人數(shù)為
40
40

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•德州二模)某種零件按質(zhì)量標準分為1,2,3,4,5五個等級,現(xiàn)從一批該零件巾隨機抽取20個,對其等級進行統(tǒng)計分析,得到頻率分布表如下
等級 1 2 3 4 5
頻率 0.05 m 0.15 0.35 n
(1)在抽取的20個零件中,等級為5的恰有2個,求m,n;
(2)在(1)的條件下,從等級為3和5的所有零件中,任意抽取2個,求抽取的2個零件等級恰好相同的概率.

查看答案和解析>>

同步練習冊答案