【題目】如圖,在三棱錐V-ABC中,平面VAB⊥平面ABC,△VAB為等邊三角形,AC⊥BC且AC=BC,O,M分別為AB,VA的中點.

(1)求證:VB∥平面MOC;

(2)求證:平面MOC⊥平面VAB;

【答案】(1)見證明(2)見證明

【解析】

1)利用三角形的中位線得出OMVB,利用線面平行的判定定理證明VB∥平面MOC;

2)證明OC⊥平面VAB,即可證明平面MOC⊥平面VAB

(1)∵O,M分別為AB,VA的中點,∴OM∥VB.

又VB平面MOC,OM平面MOC,∴VB∥平面MOC.

(2)∵AC=BC,O為AB的中點,∴OC⊥AB.又平面VAB⊥平面ABC,且OC平面ABC,

∴OC⊥平面VAB.又OC平面MOC,

∴平面MOC⊥平面VAB.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知直線與直線的距離為,橢圓的離心率為.

(1)求橢圓的標準方程;

(2)在(1)的條件下,拋物線的焦點與點關(guān)于軸上某點對稱,且拋物線與橢圓在第四象限交于點,過點作拋物線的切線,求該切線方程并求該直線與兩坐標軸圍成的三角形面積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列結(jié)論中:

定義在R上的函數(shù)f(x)在區(qū)間(-∞,0]上是增函數(shù),在區(qū)間[0,+∞)上也是增函數(shù),則函數(shù)f(x)R上是增函數(shù);f(2)=f(-2),則函數(shù)f(x)不是奇函數(shù);函數(shù)y=x-0.5(0,1)上的減函數(shù);對應(yīng)法則和值域相同的函數(shù)的定義域也相同;x0是二次函數(shù)y=f(x)的零點,m<x0<n,那么f(m)f(n)<0一定成立.

寫出上述所有正確結(jié)論的序號:_____.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義域為的函數(shù)是奇函數(shù).

1)求的值;

2)判斷函數(shù)上的單調(diào)性,并證明你的結(jié)論.

3)是否存在實數(shù),對于任意,不等式恒成立,若存在,求出實數(shù)的取值范圍,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以為極點,軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),,.

(1)當時,若對任意均有成立,求實數(shù)的取值范圍;

(2)設(shè)直線與曲線和曲線相切,切點分別為,其中.

①求證:;

②當時,關(guān)于的不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數(shù)方程為為參數(shù),),以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為

(1)寫出曲線的普通方程和曲線的直角坐標方程;

(2)已知曲線和曲線交于兩點之間),且,求實數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題正確的有________(只填序號)

①若直線與平面有無數(shù)個公共點,則直線在平面內(nèi);

②若直線l上有無數(shù)個點不在平面α內(nèi),lα;

③若兩條異面直線中的一條與一個平面平行,則另一條直線一定與該平面相交;

④若直線l與平面α平行,l與平面α內(nèi)的直線平行或異面;

⑤若平面α∥平面β,直線aα,直線bβ,則直線ab.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在一個不透明的口袋中裝有大小、形狀完全相同的個小球,將它們分別編號為,,,…,,甲、乙、丙三人從口袋中依次各抽出個小球.甲說:我抽到了編號為的小球,乙說:我抽到了編號為的小球,丙說:我沒有抽到編號為的小球.已知甲、乙、丙三人抽到的個小球的編號之和都相等,且甲、乙、丙三人的說法都正確,則丙抽到的個小球的編號分別為________________

查看答案和解析>>

同步練習冊答案