若f(x)是奇函數(shù),且在(0,+∞)上是減函數(shù),又有f(-2)=0,則不等式x•f(x)<0的解集為( 。
A、(-∞,-2)∪(2,+∞)
B、(-2,0)∪(0,2)
C、(-2,0)∪(2,+∞)
D、(-∞,-2)∪(0,2)
考點(diǎn):奇偶性與單調(diào)性的綜合
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:根據(jù)函數(shù)奇偶性和單調(diào)性之間的關(guān)系,利用數(shù)形結(jié)合即可得到結(jié)論.
解答: 解:∵奇函數(shù)在(0,+∞)上是減函數(shù),
∴在(-∞,0)上也是減函數(shù),
且f(-2)=-f(2)=0,即f(2)=0,
作出函數(shù)f(x)的草圖:
則不等式x•f(x)<0等價(jià)為x>0時(shí),f(x)<0,此時(shí)x>2
當(dāng)x<0時(shí),f(x)>0,此時(shí)x<-2,
綜上不等式的解為x>2或x<-2,
故不等式的解集為(-∞,-2)∪(2,+∞),
故選:A
點(diǎn)評(píng):本題主要考查不等式的解法,利用函數(shù)的奇偶性和單調(diào)性之間的關(guān)系是解決本題的關(guān)鍵,綜合考查函數(shù)性質(zhì)的應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,正△ABC的邊長(zhǎng)為2,P、Q分別在邊AB、AC上運(yùn)動(dòng),且線段PQ將△ABC的面積二等分,求線段PQ長(zhǎng)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的長(zhǎng)軸長(zhǎng)為6,離心率e=
6
3
,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓E標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(x1,y1),Q(x2,y2)是橢圓E上的兩點(diǎn),
m
=(x1,
3
y1),
n
=(x2,
3
y2)
,且
m
n
=0
,設(shè)M(x0,y0),且
OM
=cosθ•
OP
+sinθ•
OQ
(θ∈R),求x02+3y02的值;
(Ⅲ)如圖,若分別過橢圓E的左右焦點(diǎn)F1,F(xiàn)2的動(dòng)直線?1,?2相交于P點(diǎn),與橢圓分別交于A、B與C、D不同四點(diǎn),直線OA、OB、OC、OD的斜率k1、k2、k3、k4滿足k1+k2=k3+k4.是否存在定點(diǎn)M、N,使得|PM|+|PN|為定值.若存在,求出M、N點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

銳角△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知ctanB是btanA和btanB的等差中項(xiàng).
(Ⅰ)求角A的大;
(Ⅱ)若
m
=(sinB,sinC),
n
=(cosB,cosC),求
m
n
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(3
x
-
2
5x
n(n∈N*)的展開式中含有常數(shù)項(xiàng),則n的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求導(dǎo):y=
2
e2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某縣共有300個(gè)村,按人均年可支配金額的多少分為三類,其中一類村有60個(gè),二類村有100個(gè).為了調(diào)查農(nóng)民的生活狀況,要抽出部分村作為樣本.現(xiàn)用分層抽樣的方法在一類村中抽出3個(gè),則二類村、三類村共抽取的村數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在y=|sinx|,y=sin|x|,y=sin(2x+
π
3
)以及y=tan(πx-
1
2
)這四個(gè)函數(shù)中,最小正周期為π的函數(shù)個(gè)數(shù)為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
-
b
|=
6
,|
a
+
b
|=
10
,則
a
b
=( 。
A、1B、2C、3D、5

查看答案和解析>>

同步練習(xí)冊(cè)答案