已知A、B、C三點(diǎn)不共線,M、A、B、C四點(diǎn)共面,則對(duì)平面ABC外的任一點(diǎn)O,有,則t=   
【答案】分析:由題意A、B、C三點(diǎn)不共線,M、A、B、C四點(diǎn)共面,則對(duì)平面ABC外的任一點(diǎn)O,有,可得,解得t的值即得正確答案
解答:解:由題意由題意A、B、C三點(diǎn)不共線,M、A、B、C四點(diǎn)共面,則對(duì)平面ABC外的任一點(diǎn)O,有
∴可得,解得t=
故答案為
點(diǎn)評(píng):本題考查空間向量的基本定理及其意義,解題的關(guān)鍵是理解空間四點(diǎn)共面的條件:M、A、B、C四點(diǎn)共面等價(jià)于存在x,y,z∈z,使得,且x+y+z=1,
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C三點(diǎn)不共線,且點(diǎn)O滿足
OA
+
OB
+
OC
=0
,則下列結(jié)論正確的是( 。
A、
OA
=
1
3
AB
+
2
3
BC
B、
OA
=
2
3
AB
+
1
3
BC
C、
OA
=-
1
3
AB
-
2
3
BC
D、
OA
=-
2
3
AB
-
1
3
BC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C三點(diǎn)不共線,O是平面ABC外的任一點(diǎn),下列條件中能確定點(diǎn)M與點(diǎn)A、B、C一定共面的是( 。
A、
OM
=
OA
+
OB
+
OC
B、
OM
=2
OA
-
OB
-
OC
C、
OM
=
OA
+
1
2
OB
+
1
3
OC
D、
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C三點(diǎn)不共線,M、A、B、C四點(diǎn)共面,則對(duì)平面ABC外的任一點(diǎn)O,有
OM
=
1
2
OA
+
1
3
OB
+t
OC
,則t=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C三點(diǎn)不共線,對(duì)平面ABC外一點(diǎn)O,給出下列命題:
OM
=
1
3
OA
+
1
3
OB
+
1
3
OC
;       ②
OM
=
OA
-
OB
+
OC
;
OM
=
OA
+2
OB
+
AC
;          ④
OM
=2
OA
+
OB
+
AC

其中,能推出M,A,B,C四點(diǎn)共面的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A,B,C三點(diǎn)不共線,點(diǎn)O是平面ABC外一點(diǎn),則在下列條件中,能得到點(diǎn)M與A,B,C一定共面的一個(gè)條件為
. (填序號(hào))
OM
=
1
2
OA
+
1
2
OB
+
1
2
OC
;②
OM
=2
OA
-
OB
-
OC
;
OM
=
OA
+
OB
+
OC
;④
OM
=
1
3
OA
-
1
3
OB
+
OC

查看答案和解析>>

同步練習(xí)冊(cè)答案