精英家教網 > 高中數學 > 題目詳情
設f(x)=
x-1  x≤0
x2+6 x>0
,求∫-11f(x)dx.
分析:分段函數的積分必須分段求解,故先將原式化成∫-10f(x)dx+∫01f(x)dx,再分別求各個和式的積分,最后只要求出被積函數的原函數,結合積分計算公式求解即可.
解答:解:∫-11f(x)dx
=∫-10f(x)dx+∫01f(x)dx
=∫01(x-1)dx+∫01(x2+6)dx
=(
1
2
x2-x)|-10+(
1
3
x3+6x)|01
=-(
1
2
+1)+
1
3
+6=
29
6

∴∫-11f(x)dx=
29
6
點評:本小題主要考查定積分、定積分的應用、導數等基礎知識,考查運算求解能力、化歸與轉化思想.屬于基礎題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

設函數f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數y=f(x)圖象上的點到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關于x的不等式(x-1)2>f(x)的解集中的整數恰有3個,求實數a的取值范圍;
(3)對于函數f(x)與g(x)定義域上的任意實數x,若存在常數k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數f(x)與g(x)的“分界線”.設a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

設f(x)是定義在集合D上的函數,若對集合D中的任意兩數x1,x2恒有數學公式成立,則f(x)是定義在D上的β函數.
(1)試判斷f(x)=x2是否是其定義域上的β函數?
(2)設f(x)是定義在R上的奇函數,求證:f(x)不是定義在R上的β函數.
(3)設f(x)是定義在集合D上的函數,若對任意實數α∈[0,1]以及集合D中的任意兩數x1,x2恒有f(αx1+(1-α)x2)≤αf(x1)+(1-α)f(x2),則稱f(x)是定義在D上的α-β函數.已知f(x)是定義在R上的α-β函數,m是給定的正整數,設an=f(n),n=1,2,3…m且a0=0,am=2m,記∫=a1+a2+a3+…+am,對任意滿足條件的函數f(x),求∫的最大值.

查看答案和解析>>

科目:高中數學 來源:2012-2013學年浙江省臺州市仙居縣宏大中學高一(上)期中數學試卷(解析版) 題型:解答題

設函數y=f(x)定義在R上,對于任意實數m,n,恒有f(m+n)=f(m)•f(n),且當x>0時,0<f(x)<1
(1)求證:f(0)=1且當x<0時,f(x)>1
(2)求證:f(x)在R上是減函數;
(3)設集合A=(x,y)|f(-x2+6x-1)•f(y)=1,B=(x,y)|y=a,
且A∩B=∅,求實數a的取值范圍.

查看答案和解析>>

同步練習冊答案