M,N是曲線y=πsinx與曲線y=πcosx的兩個(gè)不同的交點(diǎn),則|MN|的最小值為( )
A.π
B.
C.
D.2π
【答案】分析:|MN|的最小值即一個(gè)周期內(nèi)兩個(gè)交點(diǎn)的距離;列出方程求出兩個(gè)交點(diǎn)坐標(biāo),據(jù)兩點(diǎn)的距離公式求出|MN|的最小值.
解答:解:要求|MN|的最小值在,只要在一個(gè)周期內(nèi)解即可
∵πsinx=πcosx 解得x=或x=
得到兩個(gè)點(diǎn)為(,)和(
得到|MN|==
故選C
點(diǎn)評(píng):本題考查等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想方法、兩點(diǎn)的距離公式.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知圓C1:(x+1)2+y2=8,點(diǎn)C2(1,0),點(diǎn)Q在圓C1上運(yùn)動(dòng),QC2的垂直平分線交QC1于點(diǎn)P.
(Ⅰ) 求動(dòng)點(diǎn)P的軌跡W的方程;
(Ⅱ) 設(shè)M,N是曲線W上的兩個(gè)不同點(diǎn),且點(diǎn)M在第一象限,點(diǎn)N在第三象限,若
OM
+2
ON
=2
OC1
,O為坐標(biāo)原點(diǎn),求直線MN的斜率k;
(Ⅲ)過(guò)點(diǎn)S(0,-
1
3
)
且斜率為k的動(dòng)直線l交曲線W于A,B兩點(diǎn),在y軸上是否存在定點(diǎn)D,使以AB為直徑的圓恒過(guò)這個(gè)點(diǎn)?若存在,求出D的坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A、B分別是x軸和y軸上的兩個(gè)動(dòng)點(diǎn),滿足|AB|=2,點(diǎn)P在線段AB上且
AP
=2
PB
,設(shè)點(diǎn)P的軌跡方程為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若點(diǎn)M、N是曲線C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)動(dòng)點(diǎn),點(diǎn)Q的坐標(biāo)為(
3
2
,3)
,求△QMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠CAB=90°,|AB|=2,|AC|=
3
2
,點(diǎn)A,B關(guān)于y軸對(duì)稱(chēng).一曲線E過(guò)C點(diǎn),動(dòng)點(diǎn)P在曲線E上運(yùn)動(dòng),且保持|PA|+|PB|的值不變.
(1)求曲線E的方程;
(2)已知點(diǎn)S(0,-
3
),T(0,
3
)
,求∠SPT的最小值;
(3)若點(diǎn)F(1,
3
2
)
是曲線E上的一點(diǎn),設(shè)M,N是曲線E上不同的兩點(diǎn),直線FM和FN的傾斜角互補(bǔ),試判斷直線MN的斜率是否為定值,如果是,求出這個(gè)定值;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:崇文區(qū)二模 題型:解答題

已知A、B分別是x軸和y軸上的兩個(gè)動(dòng)點(diǎn),滿足|AB|=2,點(diǎn)P在線段AB上且
AP
=2
PB
,設(shè)點(diǎn)P的軌跡方程為C.
(Ⅰ)求曲線C的方程;
(Ⅱ)若點(diǎn)M、N是曲線C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)動(dòng)點(diǎn),點(diǎn)Q的坐標(biāo)為(
3
2
,3)
,求△QMN的面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知?jiǎng)狱c(diǎn)A、B分別在x軸、y軸上,且滿足|AB|=2,點(diǎn)P在線段AB上,且=2.設(shè)點(diǎn)P的軌跡方程為C.

(1)求點(diǎn)P的軌跡方程C;

(2)若點(diǎn)M、N是曲線C上關(guān)于原點(diǎn)對(duì)稱(chēng)的兩個(gè)動(dòng)點(diǎn),點(diǎn)Q的坐標(biāo)為(,3),求△QMN的面積S的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案