甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為,乙每次擊中目標(biāo)的概率為,兩人間每次射擊是否擊中目標(biāo)互不影響。

(1)求乙至多擊中目標(biāo)2次的概率;

(2)求甲恰好比乙多擊中目標(biāo)1次的概率。

 

【答案】

(1) (2) 

【解析】

試題分析:(1)因?yàn)橐覔糁心繕?biāo)3次的概率為,所以乙至多擊中目標(biāo)2次的概率           5分

(2)甲恰好比乙多擊中目標(biāo)1次分為:甲擊中1次乙擊中0次,甲擊中2次乙擊中1次,甲擊中3次乙擊中2次三種情形,其概率

  12分

考點(diǎn):本題考查了獨(dú)立重復(fù)試驗(yàn)的概率

點(diǎn)評(píng):解決此類問題要注意恰有k次發(fā)生和指定的k次發(fā)生的關(guān)系,對(duì)獨(dú)立重復(fù)試驗(yàn)來說,前者的概率為Cpk(1―p)n―k,后者的概率為pk(1―p)n―k.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為
1
2
,乙每次擊中目標(biāo)的概率
2
3
,
(Ⅰ)記甲擊中目標(biāo)的次數(shù)為X,求X的概率分布及數(shù)學(xué)期望;
(Ⅱ)求甲恰好比乙多擊中目標(biāo)2次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為
2
3
,乙每次擊中目標(biāo)的概率為
1
2
,兩人間每次射擊是否擊中目標(biāo)互不影響.
(1)求乙至多擊中目標(biāo)2次的概率;
(2)求甲恰好比乙多擊中目標(biāo)1次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率是
1
2
,乙每次擊中目標(biāo)的概率是
2
3

(1)求甲至多擊中2次,且乙至少擊中2次的概率;
(2)若規(guī)定每擊中一次得3分,未擊中得-1,求乙所得分?jǐn)?shù)ξ的概率和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2006•西城區(qū)一模)甲、乙兩人各進(jìn)行3次投籃,甲每次投中的概率為
2
3
,乙每次投中的概率為
3
4
.求:
(Ⅰ)甲恰好投中2次的概率;
(Ⅱ)乙至少投中2次的概率;
(Ⅲ)甲、乙兩人共投中5次的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•紅橋區(qū)一模)甲、乙兩人各進(jìn)行3次射擊,甲每次擊中目標(biāo)的概率為
3
4
,乙每次擊中目標(biāo)的概率
2
3
,假設(shè)兩人射擊是否擊中目標(biāo),相互之間沒有影響;每次射擊是否擊中目標(biāo),相互之間沒有影響.
(Ⅰ)求甲至少有1次未擊中目標(biāo)的概率;
(Ⅱ)記甲擊中目標(biāo)的次數(shù)為ξ,求ξ的概率分布及數(shù)學(xué)期望Eξ;
(Ⅲ)求甲恰好比乙多擊中目標(biāo)2次的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案