如圖,在△ABC中,∠ABC=90°,AB=,BC=1,P為△ABC內(nèi)一點,∠BPC=90°.
(1)若PB=,求PA;
(2)若∠APB=150°,求tan∠PBA.
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評3練習(xí)卷(解析版) 題型:填空題
設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=1,b=2,cos C=,則sin B=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題能力測評1練習(xí)卷(解析版) 題型:選擇題
設(shè)a,b是兩個非零向量,下列選項正確的是( ).
A.若|a+b|=|a|-|b|,則a⊥b
B.若a⊥b,則|a+b|=|a|-|b|
C.若|a+b|=|a|-|b|,則存在實數(shù)λ,使得b=λa
D.若存在實數(shù)λ,使得b=λa,則|a+b|=|a|-|b|
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練9練習(xí)卷(解析版) 題型:選擇題
在等差數(shù)列{an}中,若a2+a3=4,a4+a5=6,則a9+a10等于( ).
A.9 B.10 C.11 D.12
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練8練習(xí)卷(解析版) 題型:選擇題
已知非零向量a,b,c滿足a+b+c=0,向量a與b的夾角為60°,且|a|=|b|=1,則向量a與c的夾角為( ).
A.30° B.60° C.120° D.150°
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練7練習(xí)卷(解析版) 題型:選擇題
已知tan β=,sin(α+β)=,其中α,β∈(0,π),則sin α的值為( ).
A. B. C. D. 或
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練18練習(xí)卷(解析版) 題型:解答題
某商場為吸引顧客消費推出一項促銷活動,促銷規(guī)則如下:到該商場購物消費滿100元就可轉(zhuǎn)動如圖所示的轉(zhuǎn)盤一次,進行抽獎(轉(zhuǎn)盤為十二等分的圓盤),滿200元轉(zhuǎn)兩次,以此類推;在轉(zhuǎn)動過程中,假定指針停在轉(zhuǎn)盤的任一位置都是等可能的;若轉(zhuǎn)盤的指針落在A區(qū)域,則顧客中一等獎,獲得10元獎金;若轉(zhuǎn)盤落在B區(qū)域或C區(qū)域,則顧客中二等獎,獲得5元獎金;若轉(zhuǎn)盤指針落在其他區(qū)域,則不中獎(若指針停到兩區(qū)間的實線處,則重新轉(zhuǎn)動).若顧客在一次消費中多次中獎,則對其獎勵進行累加.已知顧客甲到該商場購物消費了268元,并按照規(guī)則參與了促銷活動.
(1)求顧客甲中一等獎的概率;
(2)記X為顧客甲所得的獎金數(shù),求X的分布列及其數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練17練習(xí)卷(解析版) 題型:選擇題
某班的全體學(xué)生參加英語測試,成績的頻率分布直方圖如圖,數(shù)據(jù)的分組依次為:[20,40),[40,60),[60,80),[80,100].若低于60分的人數(shù)是15,則該班的學(xué)生人數(shù)是( ).
A.45 B.50 C.55 D.60
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)(理)二輪復(fù)習(xí)專題提升訓(xùn)練訓(xùn)練13練習(xí)卷(解析版) 題型:填空題
已知ABCD-A1B1C1D1為正方體,①(++)2=32;②·(-)=0;③向量與向量的夾角是60°;④正方體ABCD-A1B1C1D1的體積為|··|.其中正確命題的序號是________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com