精英家教網 > 高中數學 > 題目詳情

【題目】己知在平面直角坐標系,的參數方程為 (為參數)以軸為極軸 為極點建立極坐標系,在該極坐標系下,圓是以點為圓心,且過點的圓心.

(1)求圓及圓在平而直角坐標系下的直角坐標方程;

(2)求圓上任一點與圓上任一點之間距離的最小值.

【答案】(1)圓M: 圓N: ;(2).

【解析】試題分析

1)將圓M的參數方程消去參數可得直角坐標方程;把點化為直角坐標可得圓N的圓心和圓N上的一點,從而可得半徑,進而可求得圓的方程。(2由于兩圓相離,故兩圓上的兩點間的距離的最小值為圓心距減去兩半徑之和。

試題解析

1)將方程消去參數可得,

所以圓M的方程為

的直角坐標分別為,

所以圓N的圓心為,半徑為

故圓N的方程為。

21得圓M,N的圓心距為

,

所以圓上任一點與圓上任一點之間距離的最小值為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】2018年2月22日,在韓國平昌冬奧會短道速滑男子米比賽中,中國選手武大靖以連續(xù)打破世界紀錄的優(yōu)異表現,為中國代表隊奪得了本屆冬奧會的首枚金牌,也創(chuàng)造了中國男子冰上競速項目在冬奧會金牌零的突破.根據短道速滑男子米的比賽規(guī)則,運動員自出發(fā)點出發(fā)進入滑行階段后,每滑行一圈都要依次經過個直道與彎道的交接口.已知某男子速滑運動員順利通過每個交接口的概率均為,摔倒的概率均為.假定運動員只有在摔倒或到達終點時才停止滑行,現在用表示該運動員滑行最后一圈時在這一圈內已經順利通過的交接口數.

(1)求該運動員停止滑行時恰好已順利通過個交接口的概率;

(2)求的分布列及數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知橢圓系方程 (, ), 是橢圓的焦點, 是橢圓上一點,且.

(1)求的方程;

(2)為橢圓上任意一點,過且與橢圓相切的直線與橢圓交于, 兩點,點關于原點的對稱點為,求證: 的面積為定值,并求出這個定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】甲、乙兩人玩猜數字游戲,先由甲心中想一個數字,記為a,再由乙猜甲剛才所想的數字,把乙猜的數字記為b,其中a,b∈{1,2,3,4,5,6},若|a-b|≤1,就稱甲、乙“心有靈犀”.現任意找兩人玩這個游戲,則他們“心有靈犀”的概率為(  )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在多面體ABCDEF中,若AB//DE,BC//EF

(1)求證:平面ABC//平面DEF;

(2)已知是二面角C-AD-E的平面角.求證:平面ABC平面DABE

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知拋物線C:y2=2px(p>0)的焦點為F,A為C上異于原點的任意一點,過點A的直線l交C于另一點B,交x軸的正半軸于點D,且有丨FA丨=丨FD丨.當點A的橫坐標為3時,△ADF為正三角形.
(1)求C的方程;
(2)若直線l1∥l,且l1和C有且只有一個公共點E,
(。┳C明直線AE過定點,并求出定點坐標;
(ⅱ)△ABE的面積是否存在最小值?若存在,請求出最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】《九章算術》是中國古代第一部數學專著,成于公元一世紀左右,系統(tǒng)總結了戰(zhàn)國、秦、漢時期的數學成就.其中《方田》一章中記載了計算弧田(弧田就是由圓弧和其所對弦所圍成弓形)的面積所用的經驗公式:弧田面積=(弦×矢+矢×矢),公式中“弦”指圓弧所對弦長,“矢”等于半徑長與圓心到弦的距離之差.按照上述經驗公式計算所得弧田面積與其實際面積之間存在誤差.現有圓心角為,弦長為的弧田.其實際面積與按照上述經驗公式計算出弧田的面積之間的誤差為( )平方米.(其中,

A. 15 B. 16 C. 17 D. 18

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某公司為慶祝成立二十周年,特舉辦《快樂大闖關》競技類有獎活動,該活動共有四關,由兩名男職員與兩名女職員組成四人小組,設男職員闖過一至四關概率依次是,女職員闖過一至四關的概率依次是

(1)求女職員闖過四關的概率;

(2)設表示四人小組闖過四關的人數,求隨機變量的分布列和數學期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,F1 , F2分別為橢圓 + =1(a>b>0)的左、右焦點,頂點B的坐標為(0,b),連接BF2并延長交橢圓于點A,過點A作x軸的垂線交橢圓于另一點C,連接F1C.

(1)若點C的坐標為( , ),且BF2= ,求橢圓的方程;
(2)若F1C⊥AB,求橢圓離心率e的值.

查看答案和解析>>

同步練習冊答案