設(shè)變量x,y滿足約束條件
x+y≤3
x-y≥-1
y≥1
目標(biāo)函數(shù)z=4x+2y,則有( 。
A.z有最大值無最小值B.z有最小值無最大值
C.z的最小值是8D.z的最大值是10
由z=4x+2y得y=-2x+
z
2

作出不等式組對應(yīng)的平面區(qū)域如圖;
平移直線y=-2x+
z
2

當(dāng)直線y=-2x+
z
2
經(jīng)過點(diǎn)B(0,1)時(shí),直線y=-2x+
z
2
的截距最小,此時(shí)z最小為z=2.
當(dāng)直線y=-2x+
z
2
經(jīng)過點(diǎn)C(2,1)時(shí),直線y=-2x+
z
2
的截距最大,此時(shí)z最大為z=4×2+2×1=10,
故選:D.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

如圖所示,表示陰影部分的二元一次不等式組是(  )
A.
y≥-2,
3x-2y+6>0
x<0
B.
y>-2,
3x-2y+6≥0
x≤0
C.
y>-2,
3x-2y+6>0
x≤0
D.
y>-2,
3x-2y+6<0
x<0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知-1<a+b<3,且2<a-b<4,則2a+3b的范圍是( 。
A.(-
13
2
17
2
)
B.(-
7
2
,
11
2
)
C.(-
7
2
,
13
2
)
D.(-
9
2
,
13
2
)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若A為不等式組
x≤0
y≥0
x-y+2≥0
表示的平面區(qū)域,則當(dāng)a從-1連續(xù)變化到2,動(dòng)直線2x+y=a掃過A中那部分區(qū)域的面積為( 。
A.
15
8
B.
7
4
C.
5
4
D.
9
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知△ABC的三個(gè)頂點(diǎn)的坐標(biāo)分別為A(0,3),B(4,1),C(3,4),點(diǎn)P(x,y)在△ABC的邊界及其內(nèi)部運(yùn)動(dòng),則
y+1
x+1
的最大值為______,最小值為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

實(shí)數(shù)x、y滿足
x-4y≤3
3x+5y≤25
x≥1
,則
y
x
的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

不等式2x-y+5>0表示的區(qū)域在直線2x-y+5=0的( 。
A.右上方B.右下方C.左上方D.左下方

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知
x-y+2≥0
x+y-4≥0
2x-y-5≤0
求:
(Ⅰ)z=x+2y-4的最大值;
(Ⅱ)z=x2+y2-10y+25的最小值;
(Ⅲ)z=
2y+1
x+1
的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)x,y滿足約束條件
x-y≥-1,
x+y≤3,
x≥0,
y≥o,
則z=x-2y的取值范圍為______.

查看答案和解析>>

同步練習(xí)冊答案